1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
2 years ago
13

What is the degree of polynomial?With example!​

Mathematics
2 answers:
Crazy boy [7]2 years ago
5 0

Answer:

The degree of a monomial is the sum of the exponents of all its variables.

Example 1:

The degree of the monomial 7y {}^{3}  {z}^{2} is 5(=3+2)5(=3+2) .

Example 2:

The degree of the monomial 7x is 11 (since the power of x is 11 ).

Example 3:

The degree of the monomial 66 is 0 (constants have degree 0 ).

The degree of a polynomial is the greatest of the degrees of its terms (after it has been simplified.)

Inessa [10]2 years ago
3 0

Answer:

\boxed{\mathfrak{Question ~}}

What is the degree of polynomial?

\large\boxed{\mathfrak{Answer}}

The degree of a polynomial is the highest of the degrees of the polynomial's monomials with non-zero coefficients.

Example:

{6x}^{4}  +  {2x}^{3}  + 3

4x The Degree is 1 (a variable without an

exponent actually has an exponent of 1)

More Examples:

4x^ − x + 3 The Degree is 3 (largest exponent of x)

x^2 + 2x^5 − x The Degree is 5 (largest exponent of x)

z^2 − z + 3 The Degree is 2 (largest exponent of z)

A constant polynomials (P(x) = c) has no variables. Since there is no exponent to a variable, therefore the degree is 0.

3 is a polynomial of degree 0.

You might be interested in
Comprás 4 libras de arroz con 10$.¿Cuántos necesitas para 14 libras?​
Fofino [41]

Answer:

Alegría puede comprar 16.667 libras de arroz y 12.5 libras de azúcar con 20 pesos.

Step-by-step explanation:

Sabemos que una libra de arroz cuesta 0.60 pesos, mientras que una de azúcar cuesta 0.80 pesos. Un enfoque posible es determinar cuantas libras de arroz se obtiene por el mismo dinero para adquirir una libra de azúcar a través de una regla de tres simple:

Esto quiere decir que por cada tres libras de azúcar, se compra cuatro libras de arroz. Ahora, la cantidad de alimentos que puede comprar Alegría queda restringida al dinero disponible (20 pesos) y se describe por la siguiente ecuación:

(Ec. 1)

Donde:

- Cantidad de arroz, medida en libras.

- Cantidad de azúcar, medida en libras.

Además, la siguiente ecuación se deriva de la regla de tres del inicio del problema:

(Ec. 2)

Si aplicamos (Ec. 2) en (Ec. 1) y resolvemos la ecuación resultante, tenemos que:

De (Ec. 2) tenemos que la cantidad de arroz es:

En consecuencia, Alegría puede comprar 16.667 libras de arroz y 12.5 libras de azúcar con 20 pesos.

3 0
3 years ago
|x-4|=2 solve the absolute value equation ​
Masteriza [31]

Answer:

x=6 or x=2

Step-by-step explanation:

6 0
3 years ago
Find the indicated nth partial sum of the arithmetic sequence.<br> −7, −3, 1, 5, . . ., n = 30
TiliK225 [7]

Step-by-step explanation:

Given the Arithmetic sequence

-7, -3, 1, 5, . . .

An arithmetic sequence has a constant difference d and is defined by

a_n=a_1+\left(n-1\right)d

\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n

-3-\left(-7\right)=4,\:\quad \:1-\left(-3\right)=4

\mathrm{The\:difference\:between\:all\:of\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}

d=4

\mathrm{The\:first\:element\:of\:the\:sequence\:is}

a_1=-7

as

a_n=a_1+\left(n-1\right)d

\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:

a_n=4\left(n-1\right)-7           ∵ d=4

\mathrm{Arithmetic\:sequence\:sum\:formula:}

n\left(a_1+\frac{d\left(n-1\right)}{2}\right)

\mathrm{Plug\:in\:the\:values:}

n=30,\:\space a_1=-7,\:\spaced=4

=30\left(-7+\frac{4\left(30-1\right)}{2}\right)

=30\left(58-7\right)     ∵  \frac{4\left(30-1\right)}{2}=58

=30\cdot \:51

=1530           ∵  \mathrm{Multiply\:the\:numbers:}\:30\cdot \:51=1530

Therefore, the indicated nth partial sum of the arithmetic sequence is 1530.

ANOTHER METHOD

as

a_n=4\left(n-1\right)-7

n = 30

\sum _{n=1}^{30}\:4\left(n-1\right)-7

=\sum _{n=1}^{30}4n-11

\mathrm{Apply\:the\:Sum\:Rule}:\quad \sum a_n+b_n=\sum a_n+\sum b_n

=\sum _{n=1}^{30}4n-\sum _{n=1}^{30}11

as

\sum _{n=1}^{30}4n=1860

and

\sum _{n=1}^{30}11=330

so

=1860-330

=1530

7 0
4 years ago
Find the power series representation for g centered at 0 by differentiating or integrating the power series for f (perhaps more
dalvyx [7]

The power series  is

g(x) = -2x - (2x)2/2 - (2x)3/3 -(2x)4/4 -.......-(2x)n/n - .....

To deduce the power series of g(x) from the power series for f(x) and identify its radius of convergence

The power series for f(x) is just the geometric series derived from 1/1-y ,setting y=2x.

Its radius of convergence is 0.5

Let,

f(x)= 1/1-2x = 1+ (2x) + (2x)2 + .........+(2x)n......+....

The power series expansion (geometric series),

valid for I2xI < 1 , IxI < 0.5

so, radius of convergence = 0.5

The power series for g(x) is found by integrating term by term the power series of f(x) (upto a constant). The radius of converngence of g(d) is the same as that of f(x) (from general theory) =0.5

Now, g(x) = ln(1-2x)

= -2 \int\limits^a_b {(1/1-2x)} \, dx = -2 \int\limits^a_b {f(x)} \, dx

=-2 \int\limits^a_b {[1+(2x)+ (2x)2 +........+ (2x)n+.......]} \, dx

g(x) = -2x - (2x)2/2 - (2x)3/3 -(2x)4/4 -.......-(2x)n/n - .....

is the power series expansion for g(x).

radius of convergence =0.5

For more information about power series, visit

brainly.com/question/17225810

#SPJ4

7 0
2 years ago
A population of middle school students contains 160 sixth graders, 180 seventh graders, and 140 eighth graders. Nine seventh gra
statuscvo [17]
The correct answer is 8
4 0
3 years ago
Other questions:
  • Can someone help me with question #1 and #2 I'm really confused :-(
    6·1 answer
  • Help me Graph this Linear function 3y + 4y = 12
    6·1 answer
  • the new parking lot has spaces for 450 cars the ratio of spaces for full size cars to compact cars is 11 to 4 how many spaces ar
    13·1 answer
  • What are the values of x and y. In the given figure?
    7·2 answers
  • Find the volume of a frustum of a right pyramid whose lower base is a square with a side 5 in. and whose upper base is a square
    8·1 answer
  • Use the graph to complete the input-output table. List the answer in the format of (x,y).
    6·1 answer
  • Identify the error in this column:<br> (x2 + 3x + 18) = (x + 3)(x + 6)
    11·2 answers
  • Angle 6 and 7 are examples of which type of angle pair
    10·1 answer
  • What is the correct percent when converting the decimal of 2.1
    13·2 answers
  • The range of 8,7,12,7,11,10,7,12
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!