Charles law gives the relationship between volume and temperature of gas at constant pressure
it states that at constant pressure, volume of gas is directly proportional to temperature
V/T = k
where V - volume T - temperature and k - constant

parameters for the first instance are on the left side of the equation and parameters for the second instance are on the right side of the equation
T1 - temperature in Kelvin - 27 °C + 273 = 300 K
T2 - 11 °C + 273 = 284 K
substituting the values in the equation
2.6 L / 300 K = V / 284 K
V = 2.46 L
New volume of the gas is 2.46 L
Answer:
189 Joules
Explanation:
Applying,
Q = cm(t₂-t₁)............. equation 1
Where Q = Heat, c = specific heat capacity of water, m = mass of water, t₁ = Initial Temperature, t₂ = Final temperature.
From the question,
Given: m = 15 grams = 0.015 kg, t₁ = 21 °C, t₂ = 24 °C
Constant: c = 4200J/kg.°C
Substitute these values into equation 1
Q = 0.015×4200×(24-21)
Q = 0.015×4200×3
Q = 189 Joules
Answer:
pH of 7.86, then the [OH-] is equal to 10^(14-7.86) = 10^6.14 M
Explanation: