Answer:
the answer is the option "a"
Explanation:
in petroleum polycyclic aromatic hydrocarbons are found. These organic compounds are composed of aromatic rings. PAH (Polycyclic Aromatic Hydrocarbons), are formed during the incomplete combustion of any type of organic matter. In general, exposure will be to a mixture of PAHs.
Answer:
There are four laws of thermodynamics that define fundamental physical quantities (temperature, energy, and entropy) and that characterize thermodynamic systems at thermal equilibrium.
Explanation:
The answer is B, sodium is an element.
Answer:
a. Kp=1.4


b.Kp=2.0 * 10^-4


c.Kp=2.0 * 10^5


Explanation:
For the reaction
A(g)⇌2B(g)
Kp is defined as:

The conditions in the system are:
A B
initial 0 1 atm
equilibrium x 1atm-2x
At the beginning, we don’t have any A in the system, so B starts to react to produce A until the system reaches the equilibrium producing x amount of A. From the stoichiometric relationship in the reaction we get that to produce x amount of A we need to 2x amount of B so in the equilibrium we will have 1 atm – 2x of B, as it is showed in the table.
Replacing these values in the expression for Kp we get:

Working with this equation:

This last expression is quadratic expression with a=4, b=-(4+Kp) and c=1
The general expression to solve these kinds of equations is:
(equation 1)
We just take the positive values from the solution since negative partial pressures don´t make physical sense.
Kp = 1.4


With x1 we get a partial pressure of:


Since negative partial pressure don´t make physical sense x1 is not the solution for the system.
With x2 we get:


These partial pressures make sense so x2 is the solution for the equation.
We follow the same analysis for the other values of Kp.
Kp=2*10^-4
X1=0.505
X2=0.495
With x1


Not sense.
With x2


X2 is the solution for this equation.
Kp=2*10^5
X1=50001

With x1


Not sense.
With x2


X2 is the solution for this equation.
Answer: The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century. It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation.
Explanation:
Hope this helps. :)