Answer:
Mg(OH)₂ + 2HCI → MgCI₂ + 2 H₂ O
Explanation:
The question is incomplete, the complete question is:
Which statements are consistent with Dalton's atomic theory as it was originally stated? Why?
a. Sulfur and oxygen atoms have the same mass.
b. All cobalt atoms are identical.
c. Potassium and chlorine atoms combine in a 1:1 ratio to form potassium chloride.
d. Lead atoms can be converted into gold.
<u>Answer: </u>The correct options are b) and c).
<u>Explanation:</u>
Some of the postulates of Dalton's atomic theory are:
- All matter is made of very tiny particles called atoms that participate in chemical reactions
- Atoms are indivisible particles that cannot be created or destroyed in a chemical reaction
- Atoms of a given element are identical in mass and chemical properties
- Atoms of different elements have different masses and chemical properties.
- Atoms combine in the ratio of small whole numbers to form compounds.
- The relative number and kinds of atoms are constant in a given compound.
For the given options:
<u>For a:</u>
The statement is inconsistent with the theory as no two elements can have the same mass. Only atoms of the same element can have the same mass.
This is consistent with the theory as atoms of the same element are identical.
This is consistent with the theory as atoms combine in a simple whole number ratio.
The statement is inconsistent with the theory as atoms of one element cannot be changed to atoms of other element.
Hence, the correct options are b) and c).
The answer is "<span>An atomic nucleus is positively charged because it is composed of protons". An atomic nucleus actually contains nucleons which are made up of both protons and neutrons. Since neutrons are neutral or have no charge, the charge of an atomic nucleus mainly relies on the positive charge of the protons.</span>
Answer:
I think C
Explanation:
because hydrogen on the right side only have two while on the left side it have 4
Answer:
150
Explanation:
- C₄H₂OH + 6O2 → 4CO2 + 5H₂O
We can <u>find the equivalent number of O₂ molecules for 100 molecules of CO₂</u> using a <em>conversion factor containing the stoichiometric coefficients of the balanced reaction</em>, as follows:
- 100 molecules CO₂ *
= 150 molecules O₂
150 molecules of O₂ would produce 100 molecules of CO₂.