Answer:
Explanation:
Initial kinetic energy of M = 1/2 M vi²
let final velocity be vf
v² = u² + 2a s
vf² = vi² + 2 (F / M) x D
Kinetic energy
= 1/2 Mvf²
= 1/2 M ( vi² + 2 (F / M) x D
1/2 M vi² + FD
Ratio with initial value
1/2 M vi² + FD) / 1/2 M vi²
RK = 1 + FD / 2 M vi²
Answer:
Part A:
The proton has a smaller wavelength than the electron.
<
Part B:
The proton has a smaller wavelength than the electron.
<
Explanation:
The wavelength of each particle can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Part A
Case for the electron:

But 


Case for the proton:


Hence, the proton has a smaller wavelength than the electron.
<em>Part B </em>
For part b, the wavelength of the electron and proton for that energy will be determined.
First, it is necessary to find the velocity associated to that kinetic energy:


(3)
Case for the electron:

but


Then, equation 2 can be used:

Case for the proton :

But 


Then, equation 2 can be used:

Hence, the proton has a smaller wavelength than the electron.
Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N
<span>the one that should be taken as consideration when describing the quality of a sound is: D.The number of the overtones in the sound
Too many overtones indicated that there is too many unrelated sound that make a lot of the sound's part became redundant and unecessary</span>