Answer:
Aà bhûtÿ ñhjkjłfd hÿrèërqw
Explanation:
Oxygen gains two electrons when it bonds to form a complete outer shell and magnesium loses two electrons when bonding to gain its full outer shell.
As electrons are negative, the oxygen (which gains electrons) will become negative and the magnesium (which loses electrons) will become positive.
The negative and positive ions will then attract to one another due to the magnetic pull of the positive and negative.
pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
Answer:
Melting butter
Explanation:
You can reverse the change of butter back to its original state but you can never reverse the rest back to there original state
Answer:
(A) endothermic
(A) Yes, absorbed
Explanation:
Let's consider the following thermochemical equation.
2 Fe₂O₃(s) ⇒ 4 FeO(s) + O₂(g) ΔH = 560 kJ
Since ΔH > 0, the reaction is endothermic.
We can establish the following relations:
- 560 kJ are absorbed when 2 moles of Fe₂O₃ react.
- The molar mass of Fe₂O₃ is 160 g/mol.
Suppose 66.6 g of Fe₂O₃ react. The heat absorbed is:
