Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as = 
where G is the gravitational constant
Gravitational force of the planet = 
=
=
recall, gravitational force of earth is given as = 
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
The velocity vector of the planet points toward the center of the circle is the following is true about a planet orbiting a star in uniform circular motion.
A. The velocity vector of the planet points toward the center of the circle.
<u>Explanation:</u>
Motion of the planet around the star is mentioned to be uniform and around a circular path. Objects in uniform circular motion motion has constant angular speed but the velocity of the object will not remain constant. Since the planet is in circular motion the direction of velocity vector at a particular point is tangential to the circular path at that particular point.
Thus at every point, the direction of velocity vector changes and this means the velocity is never constant. The objects in uniform circular motion has centripetal acceleration which means that velocity vector of the planet points toward the center of the circle.
Momentum = (mass) x (speed) = (1 kg) x (0.01 m/s) = 0.01 kg-m/s
<span>As the body rises up its gravitational potential energy increases but its kinetic energy decreases.
As a body falls its gravitational potential energy decreases but it's kinetic energy increases</span>
Answer: The wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.
Explanation: