Answer:
The answer is 50 Nm
Explanation:
<h3><u>Given</u>;</h3>
- Applied Force = 50 Newton
- Total Displacement = 1 meter
<h3>
<u>To </u><u>Find</u>;</h3>
Here,
W = F • d
W = 50 • 1
W = 50 Nm
Thus, Work done is 50 Nm
<u>-TheUnknownScientist 72</u>
<span>The flywheel is solid cylindrical disc. Moment of inertial = ½ * mass * radius^2
Mass = 40.0 kg
Radius = ½ * 76.0 cm = 38 cm = 0.38 meter
Moment of inertial = ½ * 41 * 0.36^2
Convert rpm to radians/second
The distance of 1 revolution = 1 circumference = 2 * π * r
The number of radians/s in 1 revolution = 2 * π
1 minute = 60 seconds
1 revolution per minute = 2 * π radians / 60 seconds = π/30 rad/s
Initial angular velocity = 500 * π/30 = 16.667 * π rad/s
170 revolutions = 170 * 2 * π = 340 * π radians
The flywheel’s initial angular velocity = 16.667 * π rad/s. It decelerated at the rate of 1.071 rad/s^2 for 48.89 seconds.
θ = ωi * t + ½ * α * t^2
θ = 16.667 * π * 48.89 + ½ * -1.071 * 48.89^2
2559.9 - 1280
θ = 1280 radians</span>
Answer:
Unbalanced
Explanation:
There is an acceleration. Look at the direction of the arrows.
First we'll calculate the energy it posesses
G.P.E = mgh = 0.2 * 10 * 100 = 200 J
Now we'll calculate the temperature rise
Q = m * c * (t2 - t1)
Q/(m * c) = t2-t1
t2 = Q/(m * c) + t1 = 200/(0.2 * 400) + 0 = <span>2.5 C</span>
Answer:
(a) increase
Explanation:
On a line graph; we have the x-axis to the positive side and the negative side .In a positive x-axis direction, the force is usually positive, vice versa the negative side as well.
The change in the potential energy of a charge field-system can be given as:

where;
q = positive test charge
E = Electric field
ds = displacement between thee charge positions
θ = Angle between the electric field and the displacement.
Given that:
Charge of the particle = -q
displacement = (60.0 -20.0)cm = 40.0 cm
θ = 0
Replacing our values in the above equation, we have:


Since the potential energy of the system is positive, therefor the electric potential energy also increases.