1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
3 years ago
15

What is 3/8 as a decimal

Mathematics
2 answers:
Alex Ar [27]3 years ago
7 0
The answer would be 0.375
CaHeK987 [17]3 years ago
5 0
Answer : 0.375

Explanation : Simply divide 3 over 8
You might be interested in
<img src="https://tex.z-dn.net/?f=%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%
garri49 [273]

Answer:

<h3>METHOD I:</h3>

(by using the first principle of differentiation)

We have the <u>"Limit definition of Derivatives"</u>:

\boxed{\mathsf{f'(x)= \lim_{h \to 0} \{\frac{f(x+h)-f(x)}{h} \} ....(i)}}

<em>Here, f(x) = sec x, f(x+h) = sec (x+h)</em>

  • <em>Substituting these in eqn. (i)</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \{\frac{sec(x+h)-sec(x)}{h} \} }<em />

  • <em>sec x can be written as 1/ cos(x)</em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{1}{cos(x+h)} -\frac{1}{cos(x)} \} }<em />

  • <em>Taking LCM</em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{cos(x)-cos(x+h)}{cos(x)cos(x+h)}  \} }<em />

  • <em>By Cosines sum to product formula, i.e.,</em>

\boxed{\mathsf{cos\:A-cos\:B=-2sin(\frac{A+B}{2} )sin(\frac{A-B}{2} )}}

<em>=> cos(x) - cos(x+h) = -2sin{(x+x+h)/2}sin{(x-x-h)/2}</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{2sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\:  \lim_{h \to 0} \frac{sin(\frac{h}{2} )}{h}   }

  • <em>I shifted a 2 from the first limit to the second limit, since the limits ar ein multiplication this transmission doesn't affect the result</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\:  \lim_{h \to 0} \frac{2sin(\frac{h}{2} )}{h}   }

  • <em>2/ h can also be written as 1/(h/ 2)</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\:  \lim_{h \to 0} \frac{1\times sin(\frac{h}{2} )}{\frac{h}{2} }   }

  • <em>We have limₓ→₀ (sin x) / x = 1. </em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: 1  }<em />

  • <em>h→0 means h/ 2→0</em>

<em>Substituting 0 for h and h/ 2</em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+0)}{cos(x+0)cos(x)} }<em />

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)cos(x)} }

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)}\times \frac{1}{cos x}  }

  • <em>sin x/ cos x is tan x whereas 1/ cos (x) is sec (x)</em>

\implies \mathsf{f'(x)=  tan(x)\times sec(x)  }

Hence, we got

\underline{\mathsf{\overline{\frac{d}{dx} (sec(x))=sec(x)tan(x)}}}

-  - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>METHOD II:</h3>

(by using other standard derivatives)

\boxed{ \mathsf{ \frac{d}{dx} ( \sec \: x) =  \sec x   \tan x }}

  • sec x can also  be written as (cos x)⁻¹

We have a standard derivative for variables in x raised to an exponent:

\boxed{ \mathsf{ \frac{d}{dx}(x)^{n}   = n(x)^{n - 1} }}

Therefore,

\mathsf{ \frac{d}{dx}( \cos x)^{ - 1} =  - 1( \cos \: x) ^{( - 1 - 1}     } \\   \implies \mathsf{\  - 1( \cos \: x) ^{- 2 }}

  • Any base with negative exponent is equal to its reciprocal with same positive exponent

\implies \: \mathsf{  - \frac{1}{ (\cos x)  {}^{2} } }

The process of differentiating doesn't just end here. It follows chain mechanism, I.e.,

<em>while calculating the derivative of a function that itself contains a function, the derivatives of all the inner functions are multiplied to that of the exterior to get to the final result</em>.

  • The inner function that remains is cos x whose derivative is -sin x.

\implies \mathsf{ -  \frac{1}{ (\cos x  )^{2} }  \times ( -  \sin x)   }

  • cos²x can also be written as (cos x).(cos x)

\implies \mathsf{   \frac{ \sin x }{ \cos x   }  \times (  \frac{1}{cos x} )   }

  • <u>sin x/ cos x</u> is tan x, while <u>1/ cos x</u> is sec x

\implies \mathsf{    \tan x  \times  \sec x  }

= sec x. tan x

<h3>Hence, Proved!</h3>
7 0
3 years ago
IF YOU WANT BRAINLIESSSSSSSSSSSSSSSSSSST SAY, "I'M A SIMP FOR BRAINLIEST", AND I WILL GIVE U BRAINLIEST!!!!!!!! BTW, NO COPY N P
bagirrra123 [75]
IM A SIMP FOR BRAINLIEST
8 0
3 years ago
Read 2 more answers
What is the percent of increase from 25 to 35?
katen-ka-za [31]
X - the percent increase

25+25x=35 \ \ \ |-25 \\&#10;25x=10 \ \ \ |\div 25 \\&#10;x=\frac{10}{25} \\&#10;\Downarrow \\&#10;x=\frac{10}{25}=\frac{10 \times 4}{25 \times 4}=\frac{40}{100}=40\%

The answer is C. 40% increase.
6 0
4 years ago
Question in pic. please help!
bonufazy [111]

Answer: 1, 3, and 4 can form triangles. The rest can not.

Step-by-step explanation:

on triangles 1, 3, and 4, the 2 smaller sides added together are greater than the longer side.

4 0
3 years ago
Read 2 more answers
4^x-4^x-1=24,then find (2x)^x
DENIUS [597]

Answer:  5²⁻⁵

<u>Step-by-step explanation:</u>

4^x-4^{x-1}=24\\\\\\3(4^{x-1})=24\\\\\\4^{x-1}=8\\\\\\2^{2(x-1)}=2^3\\\\\\2(x-1)=3\\\\\\x-1=\dfrac{3}{2}\\\\\\x=\dfrac{5}{2}\quad \rightarrow x=2.5

(2x)^x\quad =(2\cdot 2.5)^{2.5}\quad =\large\boxed{5^{2.5}}

7 0
3 years ago
Other questions:
  • 1.
    13·2 answers
  • PLEASE HELP!<br><br> x ≤ -y<br> 2x - y &lt; 4
    13·1 answer
  • Find the value of x.<br>​
    11·2 answers
  • PLS HELP HURRY!!Its ten points​
    5·1 answer
  • You roll one die 8 times. What is the probability of rolling exactly six fours
    15·1 answer
  • a rectangular prism has a height of 22 yards and a base with area 152 square yards. What is the volume?
    7·1 answer
  • An angle measures 72° less than the measure of its supplementary angle. What is the measure of each angle?
    14·2 answers
  • Can someone pls help me ?
    14·1 answer
  • A clothing retailer is gathering data on the amount of time each customer spends shopping in its stores. Each location collected
    11·2 answers
  • Determine whether the following numbers are rational or irrational​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!