One very handy electrical formula is
Power dissipated by a resistance = (Voltage)²/(resistance) .
24 kilowatts = (240 v)² / Resistance
Multiply each side by (Resistance):
(Resistance) x (24 kilowatts) = (240 v)²
Divide each side by (24 kilowatts):
Resistance = (240 v)² / (24,000 watts)
Resistance = (57,600 / 24,000) (volt² / volt · Amp)
Resistance = 2.4 (volt/Amp)
Resistance = 2.4 Ohms
Answer:
B. in both directions until the temperature is equal in the water and the air
Explanation:
When a warm body is in contact with a cool body , there is exchange of heat energy in both sides until there is attainment of equilibrium temperature . At this temperature both the body attains equal temperature . Initially rate of heat radiated by warm body is more than that from cool body , but after attainment of equilibrium , the rate becomes equal to each other . This is called dynamic equilibrium .
Hence option B is correct .
Answer:
The horizontal speed of a projectile is constant for the duration of its flight. This is because, once launched, there are no horizontal forces acting on the projectile (air resistance is usually ignored because it is very small) so horizontally the projectile will travel at a constant speed. For any calculations involving the projectile's horizontal motion, we use
distance=speed×time
d=vt
the answer is ( True ) .
the current is the same in series circuits .
The answer would be Newton’s Second Law