Answer:

Explanation:
Δ
- Δ
is the difference in velocity before and after a given time.
is the acceleration of the object during this time.
is time
is another way to write this equation.
- The Δ symbol represents "the difference between the initial and final values of a magnitude or vector", so Δ


- I rearranged this equation to solve for
, but this is a step that you don't need to take, it's just good to get in the habit of doing this. - Plug in the given values. Note that our final velocity is
, because the car travels until at <em>rest</em>.
![a=\frac{v_f-v_i}{t}\\a=\frac{(0)-[(17.1\frac{miles}{hour} )(\frac{hour}{3600s})(\frac{1609.34m}{mile})]}{9.7s}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_f-v_i%7D%7Bt%7D%5C%5Ca%3D%5Cfrac%7B%280%29-%5B%2817.1%5Cfrac%7Bmiles%7D%7Bhour%7D%20%29%28%5Cfrac%7Bhour%7D%7B3600s%7D%29%28%5Cfrac%7B1609.34m%7D%7Bmile%7D%29%5D%7D%7B9.7s%7D)
- Our initial velocity is in mph, something not in standard units, so if not changed, you will get an incorrect answer. What you need to do is cancel out the units your prior value had using division and multiplication, and at the same time multiply and divide the correct numbers and units into your equation. Or look up a converter.
![a=\frac{(0)-[(17.1\frac{miles}{hour} )(\frac{hour}{3600s})(\frac{1609.34m}{mile})]}{9.7s}\\a=\frac{0m/s-7.6m/s}{9.7s} \\a=\frac{-7.6m/s}{9.7s}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B%280%29-%5B%2817.1%5Cfrac%7Bmiles%7D%7Bhour%7D%20%29%28%5Cfrac%7Bhour%7D%7B3600s%7D%29%28%5Cfrac%7B1609.34m%7D%7Bmile%7D%29%5D%7D%7B9.7s%7D%5C%5Ca%3D%5Cfrac%7B0m%2Fs-7.6m%2Fs%7D%7B9.7s%7D%20%5C%5Ca%3D%5Cfrac%7B-7.6m%2Fs%7D%7B9.7s%7D)
- if you converted correctly, your answer for
will be ≅
. - Now divide. Notice that the units for acceleration are
or <em>meters per second, per second</em>.

- Our final answer is <em>negative </em>because the car is <em>slowing down</em>. Do not square this answer as the square symbol only applies to the units, not the magnitude.
Answer:
I have put the answer and solution in the files part!
Stack temperatures typically range from 350 to 450 degrees Fahrenheit. A 2.5% efficiency loss occurs for every 100 degrees over that temperature. The majority of buildings schedule annual boiler cleanings at regular intervals, but if you see those figures rise, it's time for a cleaning.
Excess air is required to completely burn the fuel since the air and fuel cannot combine exactly in a burner. Additionally, any leaks in the heater will draw air into the firebox that doesn't pass through the burners since the furnace or boiler firebox operates at a little negative gauge pressure. Fuels that are gaseous, like natural gas, burn more readily than fuels that are liquid or solid. Depending on the fuel type, different surplus air requirements will apply.
Learn more about temperature here-
brainly.com/question/15267055
#SPJ4
Hi there!
We must begin by converting km/h to m/s using dimensional analysis:

Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N