Answer:
C. 8,000 N
Explanation:
<em>Newton's second law of motion</em> describes the relationship between an object's mass and the amount of force needed to accelerate it.
This law can be expresses as F=ma,
where
- F - force acting on an object
- m- the mass of an object
- a - its acceleration
The more mass an object has, the more force you need to accelerate it. And the greater the force, the greater the object's acceleration.
<em>F = ma </em>
<em> =2000×4 = 8,000 N</em>
I believe the answer is D. Full Moon
Hope this helps
Answer:
(b) To get m3 to slide, m1 must be increased, never decreased.
Explanation:
Lab experiments require attentiveness. If there is one thing missed or not taken seriously whole experiment could go wrong. In this case to slide m3 there should be more weight at m1. If the weight of m1 is lesser than m3 then the object will not slide. It will remain at the point where there is more weight. To slide an object there must be less frictional surface and more weight placed at the desired end point.
Answer:
Velocity is a change in displacement over change in time and uses the units m/s.
Both are rates of change and can be positive or negative.
Acceleration is a change in velocity over change in time and uses the units m/s².
Explanation:
Velocity is the change in displacement over change in time, this makes it a rate of change. It can be positive or negative because it is a vector quantity. It uses the units m/s because that is a displacement unit over a time unit.
Acceleration is the change in velocity over change in time, this makes it a rate of change. It can be positive or negative because it is also a vector quantity. It uses the units m/s² (m/s/s) because that is a velocity unit over a time unit.