Answer:
The plane's distance from the radar station will increase about 8 miles per minute when it is 5 miles away from it.
Step-by-step explanation:
When the plane passes over the radar station, the current distance is the altitude h = 2. Then it moves b horizontally so that the distance to the station is 5. We can form a rectangle triangle using b, h and the hypotenuse 5. Therefore, b should satisfy
h²+b² = 5², since h = 2, h² = 4, as a result
b² = 25-4 = 21, thus
b = √21.
Since it moved √21 mi, then the time passed is √21/540 = 0.008466 hours, which is 0.51 minutes. Note that in 1 minute, the plane makes 540/60 = 9 miles.
The distance between the plane and the radar station after x minutes from the moment that the plane passes over it is given by the function

We have to compute the derivate of f in x = 0.51. The derivate of f is given by

also,

The plane's distance from the station will increase about 8 miles per minute.
Answer:
y*(x+2)=k
so y= k/(x+2)
Step-by-step explanation:
Answer:
Ball hits the ground after 4.5 sec
Step-by-step explanation:
Let a -1, so that the leading coefficient is positive
So our quadratic is

The key coefficients of two binomial variables can be 1 and 16, or 2 and 8, or 4 and 4, for the leading coefficient of 16.
Yet they can't actually be 4 and 4 because the linear (x) term coefficient has to be a multiple of 4, which it isn't and leading coefficients 1 and 16 on the binomial factors is not likely.
So, 2 and 8 taken as the leading coefficients of two binomial factors.
For constant 405, possible factorizations are 

Taking first factor, thus we find negative value for given time t. But second time equivalent to zero gives the value of 4.5 for t
Thus ball hits the ground after 4.5 sec
.
Lwh = (3+3+6) (4) (7)
12 x 4 x 7 = 336
Answer:
option C
Step-by-step explanation:
