The strength of the gravitational force between two objects depends<span> on </span>two<span>factors, </span>mass<span> and </span>distance<span>. the </span>force<span> of gravity the </span>masses<span> exert on each other. If one of the </span>masses<span> is doubled, the </span>force<span> of gravity </span>between<span> the </span>objects<span> is doubled. increases, the </span>force<span> of gravity decreases</span>
Answer:
President who did not win the popular vote
Explanation:
Critics of the Electoral college argue that the system can result in a selection of what?
hola ya sabes la respuesta si si ,me la dices porfa
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N
Answer:
a.18.5 m/s
b.1.98 s
Explanation:
We are given that

a.Let
be the initial velocity of the ball.
Distance,x=30 m
Height,h=1.8 m





Substitute the values





Initial velocity of the ball=18.5 m/s
b.Substitute the value then we get

t=1.98 s
Hence, the time for the ball to reach the target=1.98 s