Answer:
Explanation:
so filling in:
so to 2 sig figs (which is actually not accurate, but oh well...)
KE = 450000 J
If we want to find out how high it will have to travel up a hill so that its PE is the same as the KE at this speed, we set the value for KE = to PE:
450000 = (1000)(9.8)h so

Answer:
313.6 m downward
Explanation:
The distance covered by the bullet along the vertical direction can be calculated by using the equation of motion of a projectile along the y-axis.
In fact, we have:

where
y(t) is the vertical position of the projectile at time t
h is the initial height of the projectile
is the initial vertical velocity of the projectile, which is zero since the bullet is fired horizontally
t is the time
a = g = -9.8 m/s^2 is the acceleration due to gravity
We can rewrite the equation as

where the term on the left,
, represents the vertical displacement of the bullet. Substituting numbers and t = 8 s, we find

So the bullet has travelled 313.6 m downward.
Physical: Mountains, Beaches, Sea
Human: Buildings
The light does not undergo a phase change.
Also, the surface of a mirror is a rigid boundary.
Answer:Most of this ancient space rubble can be found orbiting the Sun between Mars and Jupiter within the main asteroid belt. Asteroids range in size from Vesta – the largest at about 329 miles (530 kilometers) in diameter – to bodies that are less than 33 feet (10 meters) across. The total mass of all the asteroids combined is less than that of Earth's Moon.❤