find the range of the function f(x) = 4x - 1 for the domain {-1, 0, 1, 2, 3}. {-5, -3, 0, 7, 11} {-5, -4, -3, -2, -1} {-11, -7,
Papessa [141]
Range = {4(-1) - 1, 4(0) - 1, 4(1) - 1, 4(2) - 1, 4(3) - 1} = {-4 - 1, 0 - 1, 4 - 1, 8 - 1, 12 - 1} = {-5, -1, 3, 7, 11}
3 + 2 = 1 + 4
2 + 15 = 10 + 7
8 + 9 = 19 - 2
12 - 7 = 14 - 9
Hope this helped!
Answer:
2 - 
Step-by-step explanation:
Using the addition formula for tangent
tan(A - B) =
and the exact values
tan45° = 1 , tan60° =
, then
tan15° = tan(60 - 45)°
tan(60 - 45)°
= 
=
Rationalise the denominator by multiplying numerator/ denominator by the conjugate of the denominator.
The conjugate of 1 +
is 1 -
=
← expand numerator/denominator using FOIL
= 
= 
=
+ 
= 2 - 