Answer:
Xenon
Explanation:
Avogadro’s number represent the number of the constituent particles which are present in one mole of the substance. It is named after scientist Amedeo Avogadro and is denoted by
.
Avogadro constant:-

Let the molar mass of the element is x g/mol
So,
atoms have a mass of x g
Also,
atoms have a mass of
g
This mass is equal to 848 g
So,

x= 131.3 g/mol
This mass correspond to xenon.
Molarity of solution = 1.6 M
<h3>Further explanation</h3>
Given
40 g NaOH
6 L solution
Required
Steps to solve the problem of molarity
Solution
No additional information about the question.
If you want to make the solution above, then we just need to put the existing NaOH (40 g) into 6 L of water, then do the stirring (in a warm temperature above the hot plate will speed up the NaOH dissolving process)
But if you want to know the molarity of a solution, then
- 1. we calculate the moles of NaOH

MW(molecular weight) of NaOH=
Ar Na+ Ar O + Ar H
23 + 16 + 1 = 40 g/mol
so mol NaOH :


73.606 °C is the freezing point of the solution made with with 1.31 mol of CHCl3 in 530.0 g of CCl4.
Explanation:
Data given:
number of moles of CHCl3 = 1.31 moles
mass of solvent CHCl3 = 530 grams or 0.53 kg
Kf = 29.8 degrees C/m
freezing point of pure solvent or CCl4 = -22.9 degrees
freezing point = ?
The formula used to calculate the freezing point of the mixture is
ΔT = iKf.m
m= molality
molality = 
putting the value in the equation:
molality= 
= 2.47 M
Putting the values in freezing point equation
ΔT = 1.31 x 29.8 x 2.47
ΔT = 73.606 degrees
Answer:
Ocean temperature plays an important role in the Earth's climate system—particularly sea surface temperature (see the Sea Surface Temperature indicator)—because heat from ocean surface waters provides energy for storms and thereby influences weather patterns.
The more particles (ions or molecules) that you can put into solution, the lower the freezing point.
the answer is E. 2.0 M nacl