The formula equation that shows a reversible reaction is
NH4Cl (s) ⇔ NH3 (g) + HCl (g) ( answer C)
<em> </em>
<em> </em><u><em> Explanation</em></u>
- Reversible reaction is a chemical reaction where the reactants form products , where in turn react together to form reactant back.
- The reaction of NH4Cl (s)⇔ NH3(g) + HCl (g) is a reversible reaction since NH4Cl decompose to form NH3 and HCl which in turn react together to form NH4Cl back .
Answer: hot
Explanation:
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and the system will be cold and surroundings will be hot.
Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and the system will be hot and surroundings will be cold.
As heat is absorbed, the reaction is endothermic and the system will feel hot.
Answer:
Explanation:
Your strategy here will be to
use the chemical formula of carbon dioxide to find the number of molecules of
CO
2
that would contain that many atoms of oxygen
use Avogadro's constant to convert the number of molecules to moles of carbon dioxide
use the molar mass of carbon dioxide to convert the moles to grams
So, you know that one molecule of carbon dioxide contains
one atom of carbon,
1
×
C
two atoms of oxygen,
2
×
O
This means that the given number of atoms of oxygen would correspond to
4.8
⋅
10
22
atoms O
⋅
1 molecule CO
2
2
atoms O
=
2.4
⋅
10
22
molecules CO
2
Now, one mole of any molecular substance contains exactly
6.022
⋅
10
22
molecules of that substance -- this is known as Avogadro's constant.
In your case, the sample of carbon dioxide molecules contains
2.4
⋅
10
22
molecules CO
2
⋅
1 mole CO
2
6.022
⋅
10
23
molecules CO
2
=
0.03985 moles CO
2
Finally, carbon dioxide has a molar mass of
44.01 g mol
−
1
, which means that your sample will have a mass of
0.03985
moles CO
2
⋅
44.01 g
1
mole CO
2
=
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
∣
∣
a
a
1.8 g
a
a
∣
∣
−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the number of atoms of oxygen present in the sample.