The inequality would be b<50 and it has infinitely many solutions because there are infinitely many numbers that are in the solution set (-infinity, 50)
<u>Answer:</u>
$3.80
<u>Step-by-step explanation:</u>
We are given a graph showing the location of 3 houses where you had to do lawn work today, with the distances from your house.
Given that one truck gets 8 miles per gallon of gasoline and gas costs $1.52 per gallon, we are to find the total cost of the gas used.
Total distance = 7 + 3 + 4 + 6 = 20 miles
Gallons of gas used = 20 / 8 = 2.5
Total cost of gas used = 2.5 * 1.52 = $3.80
We have that
using a graph tool
see the attached figure
case A) x − 2y > 3
this <span>inequality represented the graph
case B) </span><span>x − 2y < 3
</span>this inequality not represented the graph
case C) <span>2x − y > 3
</span>this inequality not represented the graph
case D) <span>2x − y < 3
</span>this inequality not represented the graph
the answer isthe option <span>
A, x − 2y > 3</span>
Answer:
Explanation:
Hola. Puesto que tu pregunta está en español, te responderé en el mismo lenguage.
Estas son las posibilidades dadas por la combinación moneda/dado
Número de combinaciones
Moneda: prenda
Cara: vestido 1 de 2: 1/2
Sello: falda 1 de 2: 1/2
Dado: color
Par: negro 3 de 6: 3/6
Impar: café 3 de 6: 3/6
En total son 2 × 6 resultados: 12 (incluye resultados repetidos, no son todos diferentes entre sí)
¿Cuántas combinaciones tienen vestido y color negro?
Es decir: moneda = cara y dado = par
Por tanto, la probabilidad de vestido negro es:
- 3 de 12 = 3/12 = 1/4 ← respuesta
Hay otras formas de resolverlo. Por ejemplo;
Como los resultados de lanzar la moneda y el dado son independientes:
- P(Vestido∩negro) = P(Vestido) × P(Negro)
- P(Vestido) = 1/2
- P(Negro) = 3/6 = 1/2
- P(Vestido) × P(Negro) = 1/2 × 1/2 = 1/4 ← mismo resultado
Answer:
The image of the point is (1, 2)
Step-by-step explanation:
- If the point (x, y) rotated about the origin by angle 90° counterclockwise, then its image is (-y, x)
- If the point (x, y) rotated about the origin by angle 180° counterclockwise, then its image is (-x, -y)
- If the point (x, y) rotated about the origin by angle 270° counterclockwise, then its image is (y, -x)
Let us use the rules above to solve the question
∵ The point (-1, -2) is rotated 180° counterclockwise about the origin
→ By using the 2nd rule above change the signs of x and y coordinates
∴ Its image is (1, 2)
∴ The image of the point is (1, 2)