The value of the function h(x + 1) is -x^2 - x + 1
<h3>How to evaluate the function?</h3>
The equation of the function is given as:
h(t) =-t^2 + t + 1
The function is given as:
h(x + 1)
This means that t = x + 1
So, we substitute t = x + 1 in the equation h(t) =-t^2 + t + 1
h(x + 1) =-(x + 1)^2 + (x + 1) + 1
Evaluate the exponent
h(x + 1) =-(x^2 + 2x + 1) + x + 1 + 1
Expand the brackets
h(x + 1) = -x^2 - 2x - 1 + x + 1 + 1
Evaluate the like terms
h(x + 1) = -x^2 - x + 1
Hence, the value of the function h(x + 1) is -x^2 - x + 1
Read more about functions at:
brainly.com/question/1415456
#SPJ1
<u>Complete question</u>
Consider the following function definition, and calculate the value of the function
h(t) = −t2 + t + 1 h(x + 1)

<em>-------------------------------------------------------------</em>

<u>It's 10.</u>
----------------------------------------------------

<u>It's 90</u>
<span>137.5 because first you divide 110 by 80 and then mupilty the answer by 100
</span>
Answer:
2l-3=w with l=length and w=width, please note i am not actually in college but 7th grade
Step-by-step explanation: