5
if zero falls between two significant numbers it becomes significant.
The force of gravity between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the mass of the object is

, while the Earth's mass is

. Their separation is

, therefore the gravitational force exerted on the object is
1/2 the wavelength.......
In order for particles to perform a simple harmonic motion, we must follow the law of force of the form F = -kx, where x is the displacement of the object from the equilibrium position and k is the spring constant. The
force shown in <span>F = -kx is always the restoring force in the sense
that the particles are pulled towards the equilibrium position.
The
repulsive force felt when the charge q1 is pushed into another charge
q2 of the same polarity is given by Coulomb's law
F = </span><span>k *q1* q2 / r^2.
</span>It is clear that Coulomb's law is an inverse-square relationship. It does not have the same mathematical form as the equation <span><span>F = -kx.</span> Thus,
charged particles pushed towards another fixed charged particle of
the same fixed polarity do not show a simple harmonic motion when
released. Coulomb's law does not describe restoring force. When q1 is released, it just fly away from q2 and never returns.</span>
The formula is P = E/t, where P means power in watts, E means energy j , and t means time in seconds. This formula states that power is the consumption of energy per unit of time.
P = 15 M / 10*60
M = mega = 10⁶
15 *10⁶ / 600
= 25000 watt