To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


The answer to this is easy once you look at the units for Joules. 1 Joule = 1 N.m (Newton.meter). The 'Newton' is the units of force that we are trying to find, and we know the meters is 2, from the question. So you have an 8Joule or 8N.m energy difference over 2 meters.
well if we know the meters, then the real question is written as:
8N.m = ?N x 2m
so just solve for N;
N = 8N.m / 2m = 4
So F = 4N
Answer:
1.67 m/s
Explanation:
Momentum is conserved.
Initial momentum = final momentum
(30 kg) (10 m/s) + (35 kg) (-10 m/s) = (30 kg) v + (35 kg) (0 m/s)
300 - 350 = 30v
v = -5/3 m/s
Linus will move at 1.67 m/s in the direction opposite that he started.
According to periodic trends in the periodic table, the atomic radius decreases from left to right.
In period three, the element with the smallest atomic radius would be the element in the rightmost area. Protons increase as it goes to the right, which would mean they pull in electrons closer which decreases the size.
So in period 3, the element with the smallest atomic radius is Argon (Ar).
Answer:
0
Explanation:
Given the following :
Height of wall = 19.2 m
Time taken to hit the ground = 5 seconds
Acceleration due to gravity (g) = 9.8m/s ( downward motion)
The initial velocity of the object refers to the Velocity of the object at time t = 0
Initial Velocity = g × time
Initial Velocity = 9.8 × 0 = 0