In order to calculate the time taken by the snowball to reach the highest point in its journey, we need to consider the variables along the y-direction.
Let us list out what we know from the question so that we can decide on the equation to be used.
We know that Initial Y Velocity
= 8.4 m/s
Acceleration in the Y direction
= -9.8 m/
, since the acceleration due to gravity points in the downward direction.
Final Y Velocity
= 0 because at the highest point in its path, an object comes to rest momentarily before falling down.
Time taken t = ?
From the list above, it is easy to see that the equation that best suits our purpose here is 
Plugging in the numbers, we get 0 = 8.4 - (9.8)t
Solving for t, we get t = 0.857 s
Therefore, the snowball takes 0.86 seconds to reach its highest point.
Another way to test your question is to build your own miniature buildings. Depending on how in-depth you go, building could get a little pricey, but if you keep it basic there shouldn't be a problem. Decide on a certain number of foundations to test [maybe 3 or so] and try simulating an earthquake.
<span>Hope this helps! </span>
I was going to beg off until tomorrow, but this one is nothing like those others.
Why, at only 40km/hr, we can ignore any relativistic correction, and just go with Newton.
To put a finer point on it, let's give the car a direction. Say it's driving North.
a). From the point of view of the car, its driver, and passengers if any,
the pole moves past them, heading south, at 40 km/hour .
b). From the point of view of the pole, and any bugs or birds that may be
sitting on it at the moment, the car and its contents whiz past them, heading
north, at 40 km/hour.
c). A train, steaming North at 80 km/hour on a track that exactly parallels
the road, overtakes and passes the car at just about the same time as
the drama in (a) and (b) above is unfolding.
The rail motorman, fireman, and conductor all agree on what they have
seen. From their point of view, they see the car moving south at 40 km/hr,
and the pole moving south at 80 km/hr.
Now follow me here . . .
The car and the pole are both seen to be moving south. BUT ... Since the
pole is moving south faster than the car is, it easily overtakes the car, and
passes it . . . going south.
That's what everybody on the train sees.
==============================================
Finally ... since you posed this question as having something to do with your
fixation on Relativity, there's one more question that needs to be considered
before we can put this whole thing away:
You glibly stated in the question that the car is driving along at 40 km/hour ...
AS IF we didn't need to know with respect to what, or in whose reference frame.
Now I ask you ... was that sloppy or what ? ! ?
Of course, I came along later and did the same thing with the train, but I am
not here to make fun of myself ! Only of others.
The point is . . . the whole purpose of this question, obviously, is to get the student accustomed to the concept that speed has no meaning in and of itself, only relative to something else. And if the given speed of the car ...40 km/hour ... was measured relative to anything else but the ground on which it drove, as we assumed it was, then all of the answers in (a) and (b) could have been different.
And now I believe that I have adequately milked this one for 50 points worth.
Answer:
Final Velocity = 4.9 m/s
Explanation:
We are given;. Initial velocity; u = 2 m/s
Constant Acceleration; a = 0.1 m/s²
Distance; s = 100 m
To find the final velocity(v), we will use one of Newton's equations of motion;
v² = u² + 2as
Plugging in the relevant values to give;
v² = 2² + 2(0.1 × 100)
v² = 4 + 20
v² = 24
v = √24
v = 4.9 m/s
The red box must way more. Gravitational potential energy is the product of a an objects mass times the acceleration due to gravity (which is constant on earth) times its height. Since the objects are on the same shelf they are at the same height, and since gravitational acceleration is constant as long as we stay on planet earth, then the mass is the only possible thing that could have changed. This means that the red box must weigh more than the blue box.