Answer:
mixture is the combination of more than two atom with fixed ratio. for eg Co2, 02
Answer:
1. 0.138g of valium would be lethel in the woman
2. 125mg/min is the drip of the patient
Explanation:
1. In a body, an amount of Valium > 1.52mg / kg of body weight would be lethal.
A person that weighs 200lb requires:
200<u>lb</u> × (453.6<u>g</u> / <u>1lb</u>) × (1kg / 1000<u>g</u>) = <em>90.72kg (Weight of the woman in kg)</em>
90.72kg × (1.52mg / kg) =
137.9mg ≡
<h3>0.138g of valium would be lethel in the woman</h3>
2. The IV contains 1.5g = 1500mg/mL.
If the patient is receiving 5.0mL/h, its rate in mg/h is:
5.0<u>mL</u>/h × (1500mg/<u>mL</u>) = 7500mg/h
Now as 1h = 60min:
7500mg/<u>h</u> × (1<u>h</u> / 60min) =
<h3>125mg/min is the drip of the patient</h3>
i think A but if I'm wrong sorry
then if increasing then becoming spread out so letter A
Answer:
Please, see attached two figures:
- The first figure shows the solutility curves for several soluts in water, which is needed to answer the question.
- The second figure shows the reading of the solutiblity of NH₄Cl at a temperature of 60°C.
Explanation:
The red arrow on the second attachement shows how you must go vertically from the temperature of 60ºC on the horizontal axis, up to intersecting curve for the <em>solubility</em> of <em>NH₄Cl.</em>
From there, you must move horizontally to the left (green arrow) to reach the vertical axis and read the solubility: the reading is about in the middle of the marks for 50 and 60 grams of solute per 100 grams of water: that is 55 grams of grams of solute per 100 grams of water.
Assuming density 1.0 g/mol for water, 10 mL of water is:
Thus, the solutibily is:
