0.074n = 74
multiply both sides by 1000 to make the process simpler
74n = 74000
divide both sides by 74
n = 1000
Answer:
Step-by-step explanation:
3x-4<8
3x<12
x<4
2x+2>4
2x>2
>1
1/3 ln(<em>x</em>) + ln(2) - ln(3) = 3
Recall that
, so
ln(<em>x</em> ¹ʹ³) + ln(2) - ln(3) = 3
Condense the left side by using sum and difference properties of logarithms:


Then
ln(2/3 <em>x</em> ¹ʹ³) = 3
Take the exponential of both sides; that is, write both sides as powers of the constant <em>e</em>. (I'm using exp(<em>x</em>) = <em>e</em> ˣ so I can write it all in one line.)
exp(ln(2/3 <em>x</em> ¹ʹ³)) = exp(3)
Now exp(ln(<em>x</em>)) = <em>x </em>for all <em>x</em>, so this simplifies to
2/3 <em>x</em> ¹ʹ³ = exp(3)
Now solve for <em>x</em>. Multiply both sides by 3/2 :
3/2 × 2/3 <em>x</em> ¹ʹ³ = 3/2 exp(3)
<em>x</em> ¹ʹ³ = 3/2 exp(3)
Raise both sides to the power of 3:
(<em>x</em> ¹ʹ³)³ = (3/2 exp(3))³
<em>x</em> = 3³/2³ exp(3×3)
<em>x</em> = 27/8 exp(9)
which is the same as
<em>x</em> = 27/8 <em>e</em> ⁹
Answer:

Since the angle between the two vectors is not 180 or 0 degrees we can conclude that are not parallel
And the anfle is approximately 
Step-by-step explanation:
For this case first we need to calculate the dot product of the vectors, and after this if the dot product is not equal to 0 we can calculate the angle between the two vectors in order to see if there are parallel or not.
a=[1,2,-2], b=[4,0,-3,]
The dot product on this case is:

Since the dot product is not equal to zero then the two vectors are not orthogonal.
Now we can calculate the magnitude of each vector like this:


And finally we can calculate the angle between the vectors like this:

And the angle is given by:

If we replace we got:

Since the angle between the two vectors is not 180 or 0 degrees we can conclude that are not parallel
And the anfle is approximately 
Answer:
y=14
Step-by-step explanation:
because I solved it and got 14 ......