Answer:
The atomic mass of gallium (Ga) = <u>69.723 g/mol</u>
Explanation:
Given: Two isotopes of Gallium (Ga) are Gallium-69 (⁶⁹Ga) and Gallium-71 (⁷¹Ga)
<u>For ⁶⁹Ga: </u>
Relative abundance = 60.12% = 60.12 ÷ 100 = 0.6012; Atomic mass = 68.9257 g/mol
<u>For ⁷¹Ga:</u>
Relative abundance = 39.88% = 39.88 ÷ 100 = 0.3988; Atomic mass = 70.9249 g/mol
∴ The atomic mass of Ga = (Relative abundance of ⁶⁹Ga × Atomic mass of ⁶⁹Ga) + (Relative abundance of ⁷¹Ga × Atomic mass of ⁷¹Ga)
⇒ Atomic mass of Ga = (0.6012 × 68.9257 g/mol) + (0.3988 × 70.9249 g/mol) = <u>69.723 g/mol</u>
<u>Therefore, the atomic mass of gallium (Ga) = 69.723 g/mol</u>
V1/T1 = V2/T2
Substitute the value use ratio and proportion. Use calculator.
V1 = (V2 x T1) / T2
1 is initial, 2 is final
Answer:
A neutral particle made of an electron and hole
Explanation:
Exciton
It is the combination of an electron and a hole ( hole refers to the vacancy of an electron ) . And , as both the electron and the hole have the same charge but the polarity is opposite , the combination will lead to a neutral compound , i.e. , Exciton have no charge and so neutral .
It is free to move in the nonmetallic crystal and since it charge less , it is difficult to detect it directly .
Answer:
1. Changing Beam Material
2. Corrugation
3. Changing Beam form
4. Steel Reinforcing Bars
Explanation:
Changing Beam Material
Some materials are stronger when used in beams than others. Beams made of steel for instance are stronger than beams made of wood. Therefore changing material can improve the strength of the beam. It is quite important to take into account the weights of the material though as different structures have different requirements.
Corrugation.
You can fold the beam into triangular shapes to increase strength. If you look at roofs you will notice that they are folded and this increased their strength. The same logic can be applied to beams.
Changing Beam Form
Another way to make Beams stronger is to change their form or rather their shape. Straight beams are not as strong as I-beams for instance. I-beams look like the capital letter I with the lines at both ends. I-beams are usually used in construction which shows that they are quite strong.
Steel Reinforcing Bars
When placed in concrete beams, Steel Reinforcing Bars which are also called Rebar can help strengthen a beam by helping it withstand the forces of tension. A concrete beam with Rebar inside it is known as Reinforced Concrete.
The answer would be the last one- it separates dissolved substances.
Have a great rest of your day!