1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
2 years ago
13

Solve the system of equations 3x + y = 3 and 7x + 2y = 1.

Mathematics
1 answer:
vodka [1.7K]2 years ago
4 0

Answer:

  (x, y) = (-5, 18)

Step-by-step explanation:

You have done the first two steps.

<h3>3.</h3>

  7x +2(3 -3x) = 1 . . . . . equation with y substituted

  7x +6 -6x = 1 . . . . . . . eliminate parentheses using the distributive property

  x = -5 . . . . . . . . . . . . . subtract 6 from both sides, collect terms

<h3>4.</h3>

  y = 3 -3(-5) . . . . . . . . use the substitution equation to find y

  y = 18

The solution is (x, y) = (-5, 18).

You might be interested in
Marcus works for a radio station. During his one hour radio show, he
sergiy2304 [10]

Answer:

The first one 6 second 10

just got it right :)

4 0
3 years ago
Read 2 more answers
how do I cancel this out??? this is the only thing I don't understand... have an a on my class but... never get these right...
Rus_ich [418]
You factor the expression first leaving you with \frac{3xy(z-1)}{3xy}
Then you would cancel out 3xy as because there is exactly one on each side. This, in turn, would leave you with z - 1
6 0
3 years ago
A large truck has two fuel tanks, each with a capacity of 150 gallons. Tank 1 is half full, and Tank 2 is empty.
12345 [234]

Answer:

1) G(t) = 75 + \frac{23}{4}t\\

2) After 8 minutes delivering fuel the tanks will have 121 gallons of fuel

Step-by-step explanation:

1) For generating the equation we have to take into account that in the tanks there is a initial volume of fuel that corresponds to 75 gallons, as it is stated that tank one is half full. As the capacity for tank 1 is of 150 gallons, half of the tank equals to:

\frac{150}{2} = 75 gallons

Now we have to convert the rate of delivery that is expressed as a mixed number to an improper fraction so:

5\frac{3}{4} = \frac{(5x4)+3}{4} = \frac{23}{4}

Then the pumping rate is of 23/4 gallons per minute, to get how many gallons are in the tank we just need to multiply this rate by the time in minutes, and as there is an initial volume we have to add it, so we have the following equation:

G(t) = 75 + \frac{23}{4}t\\

2) To know how much fuel is in the tank after 8 minutes we have to replace this time in the previous equation so we have

G(t) = 75 + \frac{23}{4}t\\G(8) = 75 + \frac{23}{4}(8)\\G(8) = 75 + 23(2)\\G(8) = 75 + 46\\G(8) = 121 gallons

After 8 minutes delivering fuel the tanks will have 121 gallons of fuel

8 0
2 years ago
What is the measure of the angle?<br> picture added
Doss [256]

Answer:

53

Step-by-step explanation:

the outer measurements are the correct one

7 0
3 years ago
How to find the square root of an irrational number without a calculator?
Sveta_85 [38]
The square root is having a sum, ex: 16 and you need to find 2 numbers that are the same numbers and multiply them together and their value equals the said number. Answer: 4 because 4×4=16
5 0
3 years ago
Other questions:
  • It’s me again lol pls help
    12·1 answer
  • Suppose that 7% of the general population has a disease and that the test for the disease is accurate 70% of the time. What is t
    15·2 answers
  • Please help me ASAP?!!
    12·2 answers
  • What multiple of 7 is also a factor of 7
    15·1 answer
  • Evaluate sin^-1 sqrt3/2. enter your answer in radians.
    8·2 answers
  • Solve for x:<br> 2x +3=9
    13·2 answers
  • What is the value of x in the equation 5(3x + 4) = 23?
    11·2 answers
  • Hello people heres some more points have a great day
    13·2 answers
  • Help please !!!!!!!!!
    13·1 answer
  • If the point (b,15) lies on the straight line with equation Y=5x fonde the value of b ?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!