Answer:
C. ΔG is positive at low temperatures, but negative at high temperatures (and zero at some temperature).
Explanation:
Since we need to give energy in the form of heat to vaporize a liquid, the enthalpy is positive. In a gas, molecules are more separated than in a liquid, therefore the entropy is positive as well.
Considering the Gibbs free energy equation:
ΔG= ΔH - TΔS
+ +
When both the enthalpy and entropy are positive, the reaction proceeds spontaneously (ΔG is negative) at high temperatures. At low temperatures, the reaction is spontaneous in the reverse direction (ΔG is positive).
Answer:
3.46x10⁴
Explanation:
Hello,
In this case, we can see that the number 34,560 has five significant figures, it means that if we want to write it with three, we must take the 3, 4 and 5 only. Nevertheless, since the 6 after the five is greater than 5, we can round such five to 6, so we obtain:
346
However, the decimal places cannot get lost, therefore, we move the given thousand to the three, so the number turns out:
3.46x10⁴
Best regards.
Second one i think.......
<span>2.40 - 1.68 =0.72 g of oxigen
moles = 0.72/16 g/mol=0.045
moles x = 1.68/ 55.9=0.03
0.03/0.03 = 1 = x
0.045 / 0.03 = 1.5 = O
to get whole numbers multiply by 2
x2O3
X2O3 +3 CO = 2 X + 3 CO2</span>
6= Only the digits 1 and 6 are the actual measured values. Therefore we have only 2 significant figures.
0.3= Zeros used as placeholders are not significant. Zeros that come before non-zero integers are never significant. Example 5: The zeros in 098, 0.3, and 0.000000000389 are not significant because they are all in front of non-zero integers. c. If the zeros come after non-zero integers and are followed by a decimal point, the zeros are significant.