The answer is wedge to your answer
Answer:
The mass of the nucleus is almost the same as the atom because a majority of the mass of an atom is stored in the nucleus.
The volume of an atom is larger than the nucleus. The nucleus is a tiny, concentrated area inside of the atom. Atoms are mostly empty space inside.
Explanation:
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Next, we identify the limiting reactant by computing the available moles of ethane and the moles of ethane consumed by 60.0 grams of oxygen:

Thus, we notice there are less available moles, for that reason, the ethane is the limiting reactant. Finally, we can compute the produced moles of water by:

Best regards.
Answer:
(i) Bohr; (ii) de Broglie; (iii) Heisenberg (v) Schrödinger
Explanation:
(i) Niels Bohr — 1913 — proposed that electrons travel in fixed orbits with <em>quantized energy levels</em> and that they jump from one energy level to another by absorbing or emitting quanta of light.
(ii) <em>Louis de Broglie</em> — 1924 — proposed the wave nature of electrons and suggested that all matter behaves as both waves and particles (<em>wave-particle duality</em>).
(iii) Werner Heisenberg — 1927 — formulated quantum mechanics in terms of matrices and proposed his famous <em>uncertainty principle</em>.
(v) Erwin Schrödinger — 1926 — applied wave mechanics to the electron in a hydrogen atom, showing that electrons exist in <em>orbitals </em>rather that orbits.
(iv) <em>Ernest Rutherford</em> — 1911 — proposed that atoms have most of their mass in a central nucleus (<em>nuclear atom</em>). Quantum mechanics had not yet been invented.
Answer:
Se aplica la leyes d ellos gases ideales para esto se convierten las unidades de Presión en atmósferas y Temperatura a Kelvin y si no se tiene el volumen el volumen equivale a 22.4Litros
Explanation: