Answer:
This question is incomplete but the completed question is in the attachment below. And the correct is b
Explanation:
Specific heat capacity can be defined as the amount of heat required to raise to raise 1 kg of a substance by 1 kelvin. Thus, this means that when the specific heat capacity of a substance is high, it takes more energy to increase the temperature of that substance. This also means that when different substances are subjected to the same amount of heat, the substance with the higher specific heat capacity will absorb less heat; for example at a beach, water has a very high specific heat capacity, thus when the sand in the beach is hot, the beach water is still relatively cold.
From the description above, <u>it can be seen that the metal with the least specific capacity will absorb the greatest amount of heat, thus the metal is lead</u> with the specific heat capacity of 0.129 J/(g. °C).
It would have 11 valance electrons.
Example/Explanation:
Say we are talking about groups 10. Group 10 would have 10 valance electrons because of the atom's electronic arrangement in the periodic table.
Answer:
pV= nRT
Explanation:
(p1 × V1)/ T1/ (p2 × V2)/ T2
Answer:
it has a fixed volume it can also be compressed
Explanation:
a gases molecules don't move slow because they are not solid and are not compacted.
a gas does not have a fixed shape because there is nothing to hold its shape
Answer:

Explanation:
First, we find in the tables the ΔH of formation of each compound. As you can see in the (image 1)
Then we solve the ecuation for ΔH°reaction
ΔH°reaction=∑ΔH°f(products)−∑ΔH°f(Reactants)
ΔH°reaction= (-2* 393.5 - 2*285.8) - (52.4 + 0) kJ/mol
ΔH°reaction = -1.41 *10^3 kJ/mol