Answer:
3.3557047 mL
Explanation:
The density can be found using the following formula:

Let's rearrange the formula to find the volume,
.




The volume can be found by dividing the mass by the density. The mass of the chloroform is 5 grams and the density is 1.49 grams per milliliter. Therefore,

Substitute the values into the formula.

Divide. When we divide, the grams, or g, in the numerator and denominator will cancel out.


The volume of 5 grams of chloroform is 3.3557047 milliliters
Answer:
The answer is 465.6 mg of MgI₂ to be added.
Explanation:
We find the mole of ion I⁻ in the final solution
C = n/V -> n = C x V = 0.2577 (L) x 0.1 (mol/L) = 0.02577 mol
But in the initial solution, there was 0.087 M KI, which can be converted into mole same as above calculation, equal to 0.02242 mol.
So we need to add an addition amount of 0.02577 - 0.02242 = 0.00335 mol of I⁻. But each molecule of MgI₂ yields two ions of I⁻, so we need to divide 0.00335 by 2 to find the mole of MgI₂, which then is 0.001675 mol.
Hence, the weight of MgI₂ must be added is
Weight of MgI₂ = 0.001675 mol x 278 g/mol = 0.4656 g = 465.6 mg
Answer:
Each carbon atom is covalently bonded to 4 other carbon atoms in diamond. A large amount of energy is required to split these atoms apart. This is because of the fact that covalent bonds are strong.
Answer:
91.26 g
Explanation:
Given data:
Mass of PF₃ = 180 g
Mass of F₂ required = ?
Solution:
Chemical equation:
P₄ + 6F₂ → 4PF₃
Moles of PF₃:
Number of moles = mass/ molar mass
Number of moles = 180 g/ 88 g/mol
Number of moles = 2.05 mol
Now we will compare the moles of PF₃ with F₂.
PF₃ : F₂
4 : 6
2.05 : 6/4×2.05 = 3.075
Mass of F₂:
Mass of F₂ = moles × molar mass
Mass of F₂ = 3.075 mol × 38 g/mol
Mass of F₂ = 116.85 g
If reaction yield is 78.1%:
116.85 /100 ×78.1 = 91.26 g
The stoichiometry of the reaction is 5 mols of O2 produces 4 mols of CO2.
1 mol at STP is equivalent to 22.4 liters.
So, 5*22.4 liters of O2 produces 4*22.44 liters of CO2
Then 60 liters of O2 produces 60*4/5 = 48 liters of CO2