<span><span>When water vapor condenses, 2260 joules/gram heat energy will be released into the atmosphere.
To add, </span>heat energy<span> <span>(or </span>thermal energy<span> or simply </span>heat) is defined as a form of energy<span> which transfers among particles in a substance (or system) by means of kinetic </span>energy<span> of those particles. In other words, under kinetic theory, the </span>heat<span> is transferred by particles bouncing into each other.</span></span></span>
Yeah...it should be out of your system by then
At stp the volume is 22.4 L .
hope this helps!
Answer:
I think it's B but I could be wrong so really sorry if I am
Answer:
T₂ = 169.89 K
Explanation:
Given data:
Initial volume = 250 cm³
Initial temperature = 10°C (10+273.15 K = 283.15 K)
Final temperature = ?
Final volume = 150 cm³
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 283.15 K × 150 cm³ / 250 cm³
T₂ = 42472.5 K. cm³ / 250 cm³
T₂ = 169.89 K