1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vazorg [7]
3 years ago
10

Geometry question, i have some more on my profile please help!!!!

Mathematics
1 answer:
Marysya12 [62]3 years ago
3 0

Answer:

Vertical angles are congruent

Step-by-step explanation:

vertical angles intersect, usually forming a X shape, and have to always be equal

You might be interested in
Which of the following questions could be used to represent the equation 4 - X= 28?
rosijanka [135]

Answer:

-24

Step-by-step explanation:

4 - -24= 28\\x=-24

8 0
3 years ago
A 12 foot ladder is placed against the side of the building. The base of the ladder is placed at an angle of 68° with the ground
3241004551 [841]

Answer:

Step-by-step explanation:

A

3 0
3 years ago
Work out (1/8)*2 <br> give your anwser as a fraction in its simplest form
ikadub [295]

Answer:

1/4

Step-by-step explanation:

Hope this . helped :) can i have brainliest

6 0
3 years ago
Someone plz help me with this asap!!!!!
Bas_tet [7]

Answer:

1.) x=8\sqrt{3};y=16

2.) x=1;y=\frac{\sqrt{3}}{2}

3.) x=28 ; y=14\sqrt{3}

4.) x=24 ; y=12\sqrt{3}

5.) x=4\sqrt{3};y=8\sqrt{3}

6.) x=\frac{8\sqrt{3}}{3};y=\frac{16\sqrt{3}}{3}

Step-by-step explanation:

Use the 30°-60°-90° formulas:

a. longer leg=\sqrt{3}*shorter leg

b. hypotenuse=2*shorter leg

1.) Insert values for a:

x=\sqrt{3}*8

Simplify:

x=8\sqrt{3}

Insert values for b:

y=2*8

Simplify:

y=16

2.) Insert values for a:

y=\sqrt{3}*\frac{1}{2}

Simplify:

y=\frac{\sqrt{3}}{2}

Insert values for b:

x=2*\frac{1}{2}

Simplify:

x=1

3.) Insert values for a:

y=\sqrt{3}*14

Simplify:

y=14\sqrt{3}

Insert values for b:

x=2*14

Simplify:

x=28

4.)Insert values for a:

y=\sqrt{3}*12

Simplify:

y=12\sqrt{3}

Insert values for b:

x=2*12

Simplify:

x=24

5.) Insert values for a:

12=\sqrt{3}*x

Divide both sides by \sqrt{3} and rationalize:

\frac{12}{\sqrt{3}}=\frac{\sqrt{3}*x}{\sqrt{3}}\\\\\frac{12}{\sqrt{3}}=x\\\\\frac{\sqrt{3}}{\sqrt{3}}*\frac{12}{\sqrt{3}}\\\\\frac{12\sqrt{3}}{\sqrt{9}}\\\\\frac{12\sqrt{3}}{3}\\\\4\sqrt{3}=x

Flip:

x=4\sqrt{3}

Insert values for b:

y=2*4\sqrt{3}

Simplify:

y=8\sqrt{3}

6.) Insert values for a:

8=\sqrt{3}*x

Divide both sides by \sqrt{3} and rationalize:

\frac{8}{\sqrt{3}}=\frac{\sqrt{3}*x}{\sqrt{3}}\\\\\frac{8}{\sqrt{3}}=x\\\\\frac{\sqrt{3}}{\sqrt{3}}*\frac{8}{\sqrt{3}}\\\\\frac{8\sqrt{3}}{\sqrt{9}}\\\\\frac{8\sqrt{3}}{3}=x

Flip:

x=\frac{8\sqrt{3}}{3}

Insert values for b:

y=2*\frac{8\sqrt{3}}{3}

Simplify:

y=\frac{16\sqrt{3}}{3}

Finito.

5 0
3 years ago
Solve using substitution y = 4 - 2x + 4y = 12
tensa zangetsu [6.8K]

ANSWER:

The value of x is 2 and of y is 4

(2,4)

STEP-BY-STEP EXPLANATION:

We have the following equation system

\begin{gathered} y=4 \\ -2x+4y=12 \end{gathered}

solving for substitution:

\begin{gathered} -2x+4\cdot4=12 \\ -2x+16=12 \\ -2x=12-16 \\ x=\frac{-4}{-2} \\ x=2 \end{gathered}

5 0
1 year ago
Other questions:
  • Wich measurements is not precise 982g or 980g
    15·1 answer
  • ❤❤❤PLEASE HELP ASAP I DON'T UNDERSTAND I WILL MARK BRILLIANT WHOEVER ANSWER!!!!❤❤❤
    6·1 answer
  • The ratio of the same side angles of two parallel lines is 33:3. Find all angles.
    13·1 answer
  • I will give you brainliest.
    6·1 answer
  • X2 + y2 + 4x – 2y = &lt; a
    14·1 answer
  • 1/5(2x-15)=1/10(4x-30)
    11·1 answer
  • Use your knowledge of parallel lines and same-side interior angles to solve this problem. In this parallelogram, the measure of
    14·1 answer
  • Could anyone help me with this?<br><br>​
    7·1 answer
  • Calculate each unit rate. Round to the nearest hundredth if necessary. 175 Calories in 12 ounces
    14·1 answer
  • Calculate the area of shaded​ region
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!