<span>The choices are as follows:
h2o + 2o2 = h2o2
fe2o3 + 3h2 = 2fe + 3h2o
al + 3br2 = albr3
caco3 = </span><span>cao + co2
The correct answers would be the second and the last option. The equations that are correctly balanced are:
</span> fe2o3 + 3h2 = 2fe + 3h2o
caco3 = cao + co2
To balance, it should be that the number of atoms of each element in the reactant and the product side is equal.
First step is to get the mass of water molecule in grams:
From the periodic table:
molar mass of hydrogen is 1
molar mass of oxygen is 16
molar mass of a water molecule = 2(1) + 16 = 18 gm
Now, to convert the gm into amu, all you have to do is multiply the gm you got by Avogadro's number as follows:
mass of water molecule = 18 x 6.22 x 10^23 = 1.1196 x 10^25 amu which is approximately 1 x 10^25 amu
Answer:
Explanation:
The number of moles of solute is equal to product of the molar concentration (molarity) and the volume (in liters) of solution.
Since the volumes and the molar concentrations of the<em> NaOH </em>and <em>HCl </em>solutions mixed are equal, each one of them contributes the same number of moles of solute.
Since every mol of NaOH produces one mol of OH⁻ ions and every mol of HCl produces one mol of H⁺ ion, the number of moles of OH ⁻ and H⁺ in solution are equal.
Thus, OH⁻ and H⁺ ions will be neutralized by the reaction:
- OH⁻ (aq) + H⁺ (aq) ⇄ H₂O (l)
Which is strongly shifted to the right and has <em>neutral pH</em>.
Hence, you conclude that the approximate <em>pH of the solution is neutral.</em>
Answer:
Explanation:
1) Se escoge la cadena con el mayor número de átomos de carbono. 2) Cuando hay dos cadenas posibles con el mismo número de átomos de carbono, se elige la que contenga el mayor número de triples ligaduras posibles. ... El átomo de carbono con la triple valencia libre se numera como 1.
So it could be used in every country(different languages) yet still understood