I'm going to assume that you mean't mole instead of mile. One mole of O2 has approximately the same mass of one "mole" of N2. I say this because if these elements were rounded by their atomic mass, N would stay as 14, O would round up to 16, and we wouldn't; in this case, O2 would have approximately the same mass as F because F rounds up to 19 and the different between O and N is only 2 while the difference between O and F is 3.
Answer:
151.94 u
Explanation:
The atomic mass of Eu is the <em>weighted average</em> of the atomic masses of its isotopes.
We multiply the atomic mass of each isotope by a number representing its relative importance (i.e., its <em>percent abundance</em>).
The atomic masses of Eu-151 and Eu-153 are 150.92 u and 152.92 u, respectively.
Set up a table for easy calculation.
0.4803 × 150.92 u = 72.472 u
0.5197 × 152.92 u = <u> 79.473 u
</u>
TOTAL = 151.94 u
In order to see which species has the strongest dispersion forces, you need to calculate their molar mass, because the higher the molar mass, the stronger the dispersion forces.
Since E. C8H18 has the highest molar mass, its dispersion forces are also the strongest ones.
Answer:
3-
Explanation:
Sodium aurothiosulfate is a salt with the formula Na₃Au(S₂O₃)₂. The cation of the salt is sodium ion, and the anion is aurothiosulfate ion. We can determine the charge of the aurothiosulfate ion, considering that the sum of the positive and negative charges must be equal to the charge of the compound, which is zero.
3 × Na⁺ + 1 × Au(S₂O₃)₂ⁿ⁻ = 0
3 × +1 + 1 × Au(S₂O₃)₂ⁿ⁻ = 0
Au(S₂O₃)₂ⁿ⁻ = 3-
Answer:
A
Explanation:
With the given choices, A would be correct for this question. But, both liquids and gases have particles that are far apart so that they can fill their containers.