It doesn't have a 3 dimensional pattern
Answer: 5.3 x 10^24 formula units of silver nitrate is equivalent to 8.8 moles of silver nitrate. Silver nitrate is an ionic compound, therefore, its representative particle is called a "formula unit" instead of molecule. For every mole of a substance, we know that there are 6.022 x 10^23 representative units of that substance. The amount of particles in one mole of substance is called Avogadro's number.
Further Explanation:
We can convert from number of representative particles to moles using the formula:
For this problem, we can calculate the number of moles by plugging in the given values to the equation above,
Learn More
- Learn more about representative particles brainly.com/question/8969313
- Learn more about Avogadro's number brainly.com/question/229300
- Learn more about mole conversions brainly.com/question/1370888
Keywords: moles conversion, Avogadro's number
I’m not forsure but I’m thinking it’s c sorry if I’m wrong
The molar concentration of the KI_3 solution is 0.251 mol/L.
<em>Step 1</em>. Write the <em>balanced chemical equation</em>
I_3^(-) + 2S_2O_3^(2-) → 3I^(-) + S_4O_6^(2-)
<em>Step 2</em>. Calculate the <em>moles of S_2O_3^(2-)</em>
Moles of S_2O_3^(2-)
= 27.9 mL S_2O_3^(2-) ×[0.270 mmol S_2O_3^(2-)/(1 mL S_2O_3^(2-)]
= 7.533 mmol S_2O_3^(2-)
<em>Step 3</em>. Calculate the <em>moles of I_3^(-)
</em>
Moles of I_3^(-) = 7.533 mmol S_2O_3^(2-)))) × [1 mmol I_3^(-)/(2 mmol S_2O_3^(2-)] = 3.766 mmol I_3^(-)
<em>Step 4</em>. Calculate the <em>molar concentration of the I_3^(-)
</em>
<em>c</em> = "moles"/"litres" = 3.766 mmol/15.0 mL = 0.251 mol/L