Answer : q = 6020 J, w = -6020 J, Δe = 0
Solution : Given,
Molar heat of fusion of ice = 6020 J/mole
Number of moles = 1 mole
Pressure = 1 atm
Molar heat of fusion : It is defined as the amount of energy required to melt 1 mole of a substance at its melting point. There is no temperature change.
The relation between heat and molar heat of fusion is,
(in terms of mass)
or, (in terms of moles)
Now we have to calculate the value of q.
When temperature is constant then the system behaves isothermally and Δe is a temperature dependent variable.
So, the value of
Now we have to calculate the value of w.
Formula used :
where, q is heat required, w is work done and is internal energy.
Now put all the given values in above formula, we get
w = -6020 J
Therefore, q = 6020 J, w = -6020 J, Δe = 0
The option which gives the correct mole ratios is H₂S : SO₂ = 2 : 2 and O₂ : H₂O = 3 : 2
<h3 /><h3>What is Mole ratio ?</h3>
It is a conversion factor between compounds in a chemical reaction, that is derived from the coefficients of the compounds in a balanced equation
Molar ratio also known as stoichiometry is the ratio in which the reactants and products are either formed or reacted in the given equation
The balanced equation for given reaction is as follows ;
2H₂S + 3O₂ --> 2SO₂ + 2H₂O
Molar ratio can be determined by the coefficients of the compounds in the balanced reaction
Coefficient is the number in front of the chemical compound and they are as follows
- H₂S - 2
- O₂ - 3
- SO₂ - 2
- H₂O - 2
Therefore, correct option is H₂S : SO₂ = 2 : 2 and O₂ : H₂O = 3 : 2
Learn more about mole ratio here ;
https://brainly.in/question/32799056
#SPJ1
Answer:
element
Explanation:
we know that helium is a pure substance although helium atoms are sometimes mixed with their isotopes it is still the same element. since there is no other element combined with helium this makes it an element.
Answer:
The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
Between heat and temperature there is a direct proportional relationship. The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 4.184
- m= 32 g
- ΔT= Tfinal - Tinitial= 22°C - 8°C= 14°C
Replacing:
Q= 32 g* 4.184 *14 °C
Solving:
Q= 1,874.432 J
<u><em>The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J</em></u>