The amount needed in the account when Frost retires is given by the annuity formula. Compounding is 2 times per year.
.. A = Pi/(n(1 -(1 +r/n)^(-nt)))
.. 17900 = P*.08/(2*(1 -(1 +.08/2)^(-2*12)))
.. 17900 = P*.04/(1 -(1.04^-24))
.. P ≈ 272,920.64
The compound interest formula can be used to find the present value required. 4015 days is 11 years (ignoring leap years), so the amount to deposit can be calculated from
.. A = P*(1 +r/n)^(nt)
.. 272,920.64 = P*(1 +.08/2)^(2*11) = P*1.04^22
.. P ≈ 115,160.33
We don't know about the company's obligation to Robert. To fulfill its obligation to Frost, it must deposit 115,160.33 today.
Hi,

Now just divide both sides of equation by -4.

Simplify:

Decimal form:

Hope this helps.
r3t40
Answer:
0.7 hours
Step-by-step explanation:
Given that Irina was able to make the same distance from work to home in 0.4 of an hour at 27 miles per hour, we can use this rate and time to find the distance she travels to and from work using the general formula:
d = rt, where d=distance, r = rate and t = time
d = 27(0.4) = 10.8 miles
Since the distance from Irina's home to work is 10.8 miles, we can again use the formula 'd = rt' to find the time it takes her to bike to work at a rate of 16 miles per hour and solving for time, 't':
10.8 = (16)t
t = 0.7 hours
Answers:
The formula is [f(-1)-f(-4)]/[3]
The value of f(-1) is 3
The value of f(-4) is -3
The average rate of change is 2
==============================================
Explanation:
For the first blank, we use the formula
[ f(b) - f(a) ]/[ b - a ]
where 'a' and 'b' are the endpoints for the x interval
In this case, a = -4 and b = -1. When you plug those values into the formula above, you get...
[ f(b) - f(a) ]/[ b - a]
[ f(-1) - f(-4)]/[ -1 - (-4) ]
[ f(-1) - f(-4)]/[ -1+4 ]
[ f(-1) - f(-4)]/[ 3 ]
which is why the answer is choice C for the first blank
-------------------------------------------
To compute the value of f(-1), we draw a vertical line through -1 on the x axis. This vertical line crosses the diagonal function graph at the point (-1,3). The y value of this point is what we want. Plugging in x = -1 leads to y = 3. This is why f(-1) = 3
If you want, you can draw a horizontal line through (-1,3) and you'll see it touching 3 on the y axis.
-------------------------------------------
Follow similar steps as above to compute f(-4). Draw a vertical line through x = -4 on the x axis. Mark the point where the vertical line crosses the diagonal line. This point is (-4,-3). Optionally draw a horizontal line over til you hit the y axis and you'll find that y = -3 corresponds to x = -4
This is why f(-4) = -3
-------------------------------------------
We'll use the last three sections to compute the average rate of change. Everything combines together building up to this moment.
From the first part, we had the formula
[ f(b) - f(a) ]/[ b - a ]
[ f(-1) - f(-4)]/[ 3 ]
We can replace the "f(-1)" with 3 since we found that f(-1) = 3
Similarly, f(-4) = -3 so we can replace the "f(-4)" with -3
Doing those replacements and simplifying leads to...
[ f(-1) - f(-4)]/[ 3 ]
[ 3 - (-3)]/[ 3 ]
[ 3 + 3]/[ 3 ]
6/3
2
So the average rate of change is 2
Note: because the entire graph is a straight line, the average rate of change for any interval a < x < b is going to be equal to the slope m. In this case, the slope of the line is m = 2/1 = 2. We move up 2 units each time we move to the right 1 unit along the diagonal line.
Answer:
48 cubic units.
Step-by-step Explanation:

random cubic units
tower-stacked cubic units
x 
x 