1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
5

Which situation is the best example of translational motion? Question 1 options: a coin spinning on a desk a leaf blowing across

the field a car in a parking lot with its engine running a ballerina standing on one foot.
Physics
1 answer:
lukranit [14]3 years ago
7 0

Translational motion is a type of motion in which objects move with a change in position. The situation that best shows the translational motion is leaf blowing in the field.

Translational Motion:

It is a type of motion in which objects move with a change in position.

For example- leaf blowing in the field.

  • Coin spinning on the desk does not change its position.
  • A car in the parking lot with running engine does not change its position.
  • Standing in feet is not any kind of movement.

Therefore, the situation that best shows the translational motion is leaf blowing in the field.

Learn more about Translational Motion:

brainly.com/question/2416005

You might be interested in
Two forces,
serg [7]

First compute the resultant force F:

\mathbf F_1=(5.90\,\mathbf i-5.60\,\mathbf j)\,\mathrm N

\mathbf F_2=(4.65\,\mathbf i-5.55\,\mathbf j)\,\mathrm N

\implies\mathbf F=\mathbf F_1+\mathbf F_2=(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N

Then use Newton's second law to determine the acceleration vector \mathbf a for the particle:

\mathbf F=m\mathbf a

(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N=(2.10\,\mathrm{kg})\mathbf a

\mathbf a\approx(5.02\,\mathbf i-5.31\,\mathbf j)\dfrac{\rm m}{\mathrm s^2}

Let \mathbf x(t) and \mathbf v(t) denote the particle's position and velocity vectors, respectively.

(a) Use the fundamental theorem of calculus. The particle starts at rest, so \mathbf v(0)=0. Then the particle's velocity vector at <em>t</em> = 10.4 s is

\mathbf v(10.4\,\mathrm s)=\mathbf v(0)+\displaystyle\int_0^{10}\mathbf a(u)\,\mathrm du

\mathbf v(10.4\,\mathrm s)=\left((5.02\,\mathbf i-5.31\,\mathbf j)u\,\dfrac{\rm m}{\mathrm s^2}\right)\bigg|_{u=0}^{u=10.4}

\mathbf v(10.4\,\mathrm s)\approx(52.2\,\mathbf i-55.2\,\mathbf j)\dfrac{\rm m}{\rm s}

If you don't know calculus, then just use the formula,

v_f=v_i+at

So, for instance, the velocity vector at <em>t</em> = 10.4 s has <em>x</em>-component

v_{f,x}=0+\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)(10.4\,\mathrm s)=52.2\dfrac{\rm m}{\mathrm s^2}

(b) Compute the angle \theta for \mathbf v(10.4\,\mathrm s):

\tan\theta=\dfrac{-55.2}{52.2}\implies\theta\approx-46.6^\circ

so that the particle is moving at an angle of about 313º counterclockwise from the positive <em>x</em> axis.

(c) We can find the velocity at any time <em>t</em> by generalizing the integral in part (a):

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\implies\mathbf v(t)=\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

Then using the fundamental theorem of calculus again, we have

\mathbf x(10.4\,\mathrm s)=\mathbf x(0)+\displaystyle\int_0^{10.4}\mathbf v(u)\,\mathrm du

where \mathbf x(0)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m is the particle's initial position. So we get

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\displaystyle\int_0^{10.4}\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\right)\,\mathrm du

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\dfrac12\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=10.4}

\mathbf x(10.4\,\mathrm s)\approx(542\,\mathbf i-570\,\mathbf j)\,\mathrm m

So over the first 10.4 s, the particle is displaced by the vector

\mathbf x(10.4\,\mathrm s)-\mathbf x(0)\approx(270\,\mathbf i-283\,\mathbf j)\,\mathrm m-(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m\approx(272\,\mathbf i-287\,\mathbf j)\,\mathrm m

or a net distance of about 395 m away from its starting position, in the same direction as found in part (b).

(d) See part (c).

3 0
3 years ago
Please help me with this
Firlakuza [10]

Answer:

can't see anything sorry can't help

7 0
3 years ago
Read 2 more answers
Dump Tower is 96 stories tall. A small, 1.2-kg object is dropped over the side of the roof of the tower and accelerates toward t
laiz [17]

Answer:

6.0 s

98 m/s

Explanation:

The radius of the planet is much bigger than the height of the tower, so we will assume the acceleration is constant.  Neglect air resistance.

Acceleration due to gravity on this planet is:

a = GM / r²

a = (6.67×10⁻¹¹ m³/kg/s²) (2.7 × 1.48×10²³ kg) / (1.7 × 750,000 m)²

a = 16.4 m/s²

The height of the tower is:

Δy = 96 × 3.05 m

Δy = 293 m

Given v₀ = 0 m/s, find t and v.

Δy = v₀ t + ½ at²

(293 m) = (0 m/s) t + ½ (16.4 m/s²) t²

t = 6.0 s

v² = v₀² + 2aΔy

v² = (0 m/s)² + 2 (16.4 m/s²) (293 m)

v = 98 m/s

8 0
4 years ago
1. Of the following, the one that is not an example of a suspension is
sergiy2304 [10]

Answer: 1. C

Explanation: 2. C

8 0
4 years ago
In a coal-fired power plant, after the steam has been used to turn the turbine to power the generator, it goes through a condens
Murljashka [212]

Answer:

give me theze points

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • What does the heliocentric view of a solar system imply
    15·2 answers
  • The contribution of Tycho Brahe was primarily his
    14·1 answer
  • A(n) 96.1 g ball is dropped from a height of 59.1 cm above a spring of negligible mass.The ball compresses the spring to a maxim
    6·1 answer
  • Generally , people water their plants with 100% H2o--- no solutes added. What sort of environment does this create around the ro
    8·1 answer
  • Describe the two phenomenon that caused the contamination of Cleveland’s drinking water
    13·1 answer
  • I really need Brainliest i am desprate
    12·1 answer
  • Which two characteristics increase the strength of the gravitational force
    11·1 answer
  • When fluorine reacts, it will gain<br> electron(s).<br> O 3<br> O 1<br> ОО<br> O2
    14·1 answer
  • A flat circular coil carrying a current of 8.80 A has a magnetic dipole moment of 0.194 A⋅m2 to the left. Its area vector A⃗ is
    13·1 answer
  • List three examples of real science that you find on the internet or in real life
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!