Answer:
The inventor's claim is false in the sense that no thermal machine can violate the first thermodynamic law.
Explanation:
The inventor's claim could not be possible as no thermal machine can transfer more heat than the input work consumed. If we expose the thermal efficiency:
Where Q and W both must be in the same power unit, so we will convert the remove heat from BTU/hr to hp:
Therefore by comparing, we notice that the removing heat of 4.75 hp is large than the delivered work of 1.11 hp. By evaluating the efficiency:
[tex]n=4.75 hp / 1.1 hp = 4.3 > 1[/tex]
Both A and B technicians are correct because both might be used to test fuses, according to technician B.
<h3>What is continuity?</h3>
The behavior of a function at a certain point or section is described by continuity. The limit can be used to determine continuity.
From the question:
We can conclude:
The technician claims that you may check for continuity using both an ohmmeter and a self-powered test light. Both might be used to test fuses, according to technician B.
Thus, both A and B technicians are correct because both might be used to test fuses, according to technician B.
Technician A says both an ohmmeter and a self-powered test light may be used to test for continuity. Technician B says both may be used to test fuses. Who is correct?
Learn more about the continuity here:
brainly.com/question/15025692
#SPJ1
Answer:
Test code:
>>u=10;
>>g=9.8;
>>q=100;
>>m0=100;
>>vstar=10;
>>tstar=fzero_rocket_example(u, g, q, m0, vstar)
Explanation:
See attached image
Answer:
(b)False
Explanation:
defined as
=
Where x is the distance from centroidal x-axis
y is the distance from centroidal y-axis
dA is the elemental area.
The product of x and y can be positive or negative ,so the value of
can be positive as well as negative .
So from the above expressions we can say that the product of
is different from
.