Answer:
Tension in cable BE= 196.2 N
Reactions A and D both are 73.575 N
Explanation:
The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence
hence

Therefore, tension in the cable, 
Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then



Similarly,


Therefore, both reactions at A and D are 73.575 N
Sorry bro people do this22.2 pls
Answer:
The force between the charges when the separation decreases to 0.7 meters equals 126.955 Newtons
Explanation:
We know that for two point charges of magnitude
the magnitude of force between them is given by

where
is constant
is the separation between the charges
Initially when the charges are separated by 2.4 meters the force can be calculated as

Now when the separation is reduced to 0.7 meters the force is similarly calculated as

Applying value of the constant we get

Thus 
Answer:
Explanation:
Considering the relation of the equilibrium vacancy concentration ;
nv/N = exp (-ΔHv/KT)
Where T is the temperature at which the vacancy sites are formed
K = Boltzmaan constant
ΔHv = enthalpy of vacancy formation
Rearranging the equation and expressing in term of the temperature and plugging the values given to get the temperature. The detailed steps is as shown in the attached file
Answer:
Explanation:
The rank of the magnitude of the diffusion coefficient from greatest to least is as follows:
C in Fe at 900°C > Cr in Fe at 900°C > Cr in Fe at 600°C
Reason
C in Fe is an interstitial impurity while Cr in Fe is a substutional impurity.Therefore interstitial impurity occurs in C in Fe systems,while substutitional diffusion occurs in Cr in Fe system.Interstitial is much faster than substitutional diffusion hence the order
Also with increasing temperature magnitude of diffusion coefficient increases,due to the relation.
D = D₀exp(-Qd/RT)
Where D₀=Temperature independent per exponential
Qd= The activation energy for diffusion
R= Universal gas constant
T=absolute temperature