Answer:
The source temperature is 1248 R.
Explanation:
Second law efficiency of the engine is the ratio of actual efficiency to the maximum possible efficiency that is reversible efficiency.
Given:
Temperature of the heat sink is 520 R.
Second law efficiency is 60%.
Actual thermal efficiency is 35%.
Calculation:
Step1
Reversible efficiency is calculated as follows:



Step2
Source temperature is calculated as follows:



T = 1248 R.
The heat engine is shown below:
Thus, the source temperature is 1248 R.
Answer:
a)
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b) 3.1 secs
Explanation:
a) Determine the normal times in TMUs for these motion elements
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b ) Determine the total time for this work element in seconds
first we have to determine the total TMU = ∑ TMU = 86.4 TMU
note ; 1 TMU = 0.036 seconds
hence the total time for the work in seconds = 86.4 * 0.036 = 3.1 seconds
Answer:
See explaination
Explanation:
A Finite state machines can be synchronous or asynchronous. The operation of asynchronous state machines does not require a clock signal. An Asynchronous state machine is classified basically on their operating mode, such as the fundamental mode, pulse mode or burst mode. An asynchronous state machine can have stable and transient states.
Please kindly refer to attachment for a step by step solution.