Answer:
1 957,5
Explanation:
87libs=39.5kg that equals 50=1.957.5
Answer:
B.) No, because the coefficients could be reduced to 2,1, and 3.
Explanation:
The equation is not in its lowest molar ratio form. In this case, all of the coefficients can be divided by 2 and still result in whole numbers.
As such, the correct balanced equation is:
2 NH₃ ----> N₂ + 3 H₂
The bond formed between oxygen atom of 1 water molecule with the hydrogen atom of another water molecule is called 'hydrogen bond'.
Hope this helps!
Answer:
pH = 4.71
Explanation:
We can find the pH of a buffer (Mixture of weak acid: CH3COOH, and its conjugate base: CH3COONa) using H-H equation:
pH = pKa + log [CH3COONa] / [CH3COOH]
<em>Where pH is the pH of the buffere = 4.74, pKa the pka of the buffer and [] could be taken as the moles of each reactant.</em>
As initially [CH3COONa] = [CH3COOH], [CH3COONa] / [CH3COOH] = 1:
pH = pKa + log 1
4.74 = pKa
To solve this question we need to find the initial moles of each species, The CH3COONa reacts with HCl to produce CH3COOH. That means the moles of CH3COOH after the reaction are: Initial CH3COOH + Moles HCl
Moles CH3COONa: Initial CH3COONa - Moles HCl.
<em>Moles CH3COOH: </em>
0.100L * (0.50mol / L) = 0.050 moles CH3COOH + 0.0020 moles HCl =
0.052 moles CH3COOH
<em>Moles CH3COONa: </em>
0.100L * (0.50mol / L) = 0.050 moles CH3COONa - 0.0020 moles HCl =
0.048 moles CH3COONa
Using H-H equation:
pH = 4.74 + log [0.048 moles] / [0.052 moles]
<h3>pH = 4.71</h3>
Answer:
22 kph
Explanation:
You simply divide the distance and the time. 66/3 = 22.