I think it would be c b then a
Answer:
1. Volume as STP = 755 L
2. Outside temperature = 255 K
3. Percentage yield = 70.5%
Explanation:
1. At STP, pressure = 101.3 kpa, temperature = 0°C or 273.15 K
Using the general gas equation :
P1V1/T1 = P2V2/T2
P1 = 620 kpa
V1 = 140 L
T1 = 37°C or (273.15 + 37) K = 310.15 K
P2 = 101.3 kpa
V2 = ?
T2 = 273.15 K
V2 = P1V1T2/P2T1
V2 = 620 × 140 × 273.15 / 101.3 × 310.15
V2 = 755 L
2. Using Charles' gas law:
V1/T1 = V2/T2
V1 = 2.5 L
T1 = 290 K
V2 = 2.2 L
T2 = ?
T2 = V2T1/VI
T2 = 2.2 × 290 / 2.5
T2 = 255 K
3. Equation of reaction : 2 Al + 3 CuSO4 ---> Al2 (SO4)3 + 3 Cu
From equation of the reaction, 2 moles of Al produces 3 moles of Cu
Molar mass of Al = 27 g; Molar mass of Cu = 63.5 g
2 moles of Al = 2 × 27 g = 54 g; 3 moles of Cu = 3× 63.5 = 190.5 g
54 g of Al produces 190.5 g of Cu
1.87 g of Al will produce 190.5/54 × 1.87 g of Cu = 6.60 g of Cu
Percentage yield = actual yield /theoretical yield × 100%
Percentage yield = 4.65/6.60 × 100%
Percentage yield = 70.5%
The strong nuclear force is one of the four fundamental forces in nature; the other three are gravity, electromagnetism and the weak force.
As its name implies, the strong force is the strongest force of the four. It is responsible for binding together the fundamental particles of matter to form larger particles.
Answer : The mass of
required is 18.238 grams.
Explanation : Given,
Mass of
= 83.10 g
Molar mass of
= 146 g/mole
Molar mass of
= 256.52 g/mole
The balanced chemical reaction is,

First we have to determine the moles of
.

Now we have to determine the moles of
.
From the balanced chemical reaction we conclude that,
As, 8 moles of
produced from 1 mole of 
So, 0.569 moles of
produced from
mole of 
Now we have to determine the mass of
.


Therefore, the mass of
required is 18.238 grams.
CaBr conducts electricity in the molten state but does not conduct as a solid. ionic dissolution equation.