Copper oxide(solid) + Sulphuric Acid (aqueous)-> Copper Sulphate (aqueous)+ Water(liquid)
In equation form:
CuO +H2SO4 -> CuSO4 + H2O
The colour change you will see is black to blue as Copper oxide is usually found as a black powder. Upon the reaction with sulphuric acid it will change to a cyan blue.
If you heat the made solution of copper sulphate, the water will evaporate and you will be left with white anhydrous copper sulphate crystals.
It is B. Thank you later please and do good on the test!
This is a neutron induced fission, therefore a neutron will be added to the U²³⁵ to cause the reaction, and thus it will be added to the left side. There will be unknown number of neutrons produced and thus we put this on the right hand side.
n₁ + U²³⁵ = Te¹³⁷ + Zr ⁹⁷ + xn1 ( n1 to mean a neutron of mass 1)
To balance the masses on both sides of the equation;
1 + 235 = 137 +97+ x
x = 2
the end reaction will be
n₁ +U²³⁵ = Te¹³⁷ + Zr⁹⁷ + 2 n₁
Answer:
5- number of electrons=11
Explanation:
in a neutral atom number of protons=number of electrons which in this case=11
Answer:
The correct option is e
Explanation:
Hydrogen bond is an intermolecular interaction/bonding that are formed between an electronegative atom (such as nitrogen, oxygen and fluorine) and a hydrogen atom. They are weak intermolecular bonds compared to covalent bonds but account for the high boiling point of water because of the strong hydrogen bond presence between the water molecules. Water molecules form hydrogen bonds between each other; since an oxygen atom (in a water molecule) has two lone pairs on it's outermost shell, it forms an hydrogen bond with two hydrogen atoms of other water molecule. Due to the fluidity of liquid water molecules, hydrogen bonds keep getting broken (although recreated/formed almost immediately), hence, individual hydrogen bonds in liquid water does not exist for long.
In the explanation above, it was stated that the strength of the hydrogen bond in water is the reason for it's high boiling point. The atoms in a water molecule are bent NOT linear hence the strength of hydrogen bond does not depend on the linearity of the atoms involved in the bond.