Answer:
0.6kg
Explanation:
the unknown here is the mass of the second block
applying the law of the conservation of momentum
m₁v₁ + m₂v₂ = (m₁ + m₂) v₃
where m₁=mass of first block=2.2kg
m₂=mass of colliding block= ?
v₁= velocity of first block=1.2m/s
v₂=velocity of colliding block=4.0m/s
v₃= final velocity of combined block=1.8m/s
applying the formula above
(2.2 × 1.2) + (m₂ × 4) = (2.2 + m₂) × 1.8
2.64 + 4m₂ = 3.96 + 1.8m₂
collecting like terms
4m₂ - 1.8m₂ = 3.96 - 2.64
2.2m₂=1.32
divide both sides by 2.2
m₂= 0.6kg
The radar device determines the vehicle's instantaneous speed.
I would argue that the purpose of the device is not to determine
whether individuals are driving safely. They only determine whether
individuals are driving within legal speed limits. There's much more
to 'safe' driving than that, but the radar gun can't detect it.
Answer:
The racetrack is 996.7 meters long
Explanation:
Convert 251km/h to km/s (kilometers per second)
3600 seconds in an hour, so:
251/3600 = 0.0697km/s
Convert km/s to m/s (meters per second)
1000 meters in a kilometer, so:
0.0697*1000 = 69.7m/s
Find length of racetrack:
69.7m/s*14.3s = 996.7m
If the racer travels 69.7 meters in one second and it takes 14.3 seconds to complete a lap, the racetrack is 996.7 meters long.
There is no adjustment in gravity, yet there is an adjustment in 'weightness'.
Gravitational compel and weight with respect to an edge are not similar things, despite the fact that it is normally educated something else.
Weight is really the aggregate of gravitational powers and of inertial drive for a question very still (no Coriolis compel) in a given casing.
In the event that the Earth were not pivoting, weight would increment most at the Equator and be unaltered at the Poles.
Answer:
Matter is made up of particles that are constantly moving. All particles have energy, but the energy varies depending on the temperature the sample of matter is in. This in turn determines whether the substance exists in the solid, liquid, or gaseous state.
Explanation: