Answer:
Parachute exerts a force of 619.2 N upward
The net force is 86.4 N acting downward
Explanation:
As the gravitational acceleration g = 9.8 m/s2, the parachute help reduces the net acceleration to 1.2m/s. So it must exerted an upward acceleration on the skydiver of
9.8 - 1.2 = 8.6 m/s2
Since the skydiver mass is 72 kg, we can use Newton's 2nd law to calculate the force that causes this acceleration of 8.6
F = ma = 8.6*72 = 619.2 N acting upward
The net force is also the product of net acceleration and mass
= 1.2 * 72 = 86.4 N acting downward
Answer:
donde esta la bibliotekaaa
Explanation:
dfghj
Answer:
The chance in distance is 25 knots
Explanation:
The distance between the two particles is given by:
(1)
Since A is traveling north and B is traveling east we can say that their displacement vector are perpendicular and therefore (1) transformed as:
(2)
Taking the differential with respect to time:
(3)
where
and
are the respective given velocities of the boats. To find
and
we make use of the given position for A,
, the Pythagoras theorem and the relation between distance and velocity for a movement with constant velocity.

with this time, we know can now calculate the distance at which B is:

and applying Pythagoras:

Now substituting all the values in (3) and solving for
we get:

The time spent in the air by the ball at the given momentum is 6.43 s.
The given parameters;
- <em>momentum of the ball, P = 0.9 kgm/s</em>
- <em>weight of the ball, W = 0.14 N</em>
The impulse experienced by the ball is calculated as follows;

where;
is impulse
is change in momentum
The time of motion of the ball is calculated as follows;

Thus, the time spent in the air by the ball at the given momentum is 6.43 s.
Learn more here:brainly.com/question/13468390