I’m not really sure I’m sorry
Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
Answer: <u>elastically</u> deformed or <u>non-permanently</u> deformed
Explanation:
According to classical mechanics, there are two types of deformations:
-Plastic deformation (also called irreversible or permanent deformation), in which the material does not return to its original form after removing the applied force, therefore it is said that the material was permanently deformed.
This is because the material undergoes irreversible thermodynamic changes while it is subjected to the applied forces.
-Elastic deformation (also called reversible or non-permanent deformation), in which the material returns to its original shape after removing the applied force that caused the deformation.
In this case t<u>he material also undergoes thermodynamic changes, but these are reversible, causing an increase in its internal energy by transforming it into elastic potential energy.</u>
<u />
Therefore, the situation described in the question is related to elastic deformation.
Speed = (distance covered) / (time to cover the distance)
= ( 8.45 km) / (0.65 hr)
= (8.45 / 0.65) km/hr
= 13 km/hr