Answer:
0.239 T
Explanation:
Applying,
F = Bvqsin∅................ Equation 1
Where F = magnetic force, B = magnetic Field, q = charge of a proton, v = velocity of proton, ∅ = angle between the velocity and the magnetic field.
make B the subject of the equation
B = F/(vqsin∅)................. Equation 2
From the question,
Given: F = 1.15×10⁻¹³ N, v = 3.0×10⁶ m/s, ∅ = 90°(perpendicular)
Constant: q = 1.602 x 10⁻¹⁹ C
Substitute into equation 2
B = 1.15×10⁻¹³ /(3.0×10⁶×1.602 x 10⁻¹⁹×sin90°)
B = 1.15×10⁻¹³/(4.806×10⁻¹³)
B = 0.239 T.
Hence the magnetic field = 0.239 T
Answer:
Explanation:
You are not raising the temperature of the block of ice. You are making it turn phase.
H = m * hf
That's the mass of the block and the latent heat of fusion.
D.
Answer:
700 mL or 0.0007 m³
Explanation:
P₁ = Initial pressure = 2 atm
V₁ = Initial volume = 350 mL
P₂ = Final pressure = 1 atm
V₂ = Final volume
Here the temperature remains constant. So, Boyle's law can be applied here.
P₁V₁ = P₂V₂

So, volume of this sample of gas at standard atmospheric pressure would be 700 mL or 0.0007 m³
The 1st example is NOT a longitudinal wave
Explanation:
Waves are periodic disturbance of the space that travel carrying energy but not matter.
Depending on their vibration, waves are classified into two types:
- Transverse waves: in transverse waves, the vibration of the wave occurs in a direction perpendicular to the direction of propagation of the wave. Examples of transverse waves are electromagnetic waves.
- Longitudinal waves: in longitudinal waves, the vibration of the wave occurs in a direction parallel to the direction of propagation of the wave (back and forth), creating regions of higher particle density (compressions) and lower particle density (rarefactions). Examples of longitudinal waves are sound waves.
In this problem we have four options given:
- The first picture represents a transverse wave, because the vibration of the robe is up and down, while the wave propagates on the left-right direction
- The second picture represents a sound wave, which is a longitudinal wave
- The 3rd picture represents a longitudinal wave, since the vibration of the slinky is back and forth along the direction of propagation
- The 4th picture also represents a sound wave, which is longitudinal
Therefore, the only wave which is not longitudinal is the one in the 1st picture.
Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly