Answer:
12
Step-by-step explanation:
The square root of 144 = 12.
12 x 12 = 144
Hope that helps!
If this is asking for the nearest hundred thousand, and not ten thousand, than you would round up to 100,000. 91,284 is close to 100,000.
You are going to divide 366 by 12 you get 30.5 so 30 filled cartons
are you sure it's not 336 eggs??
We have to calculate the perimeter of the figure to the nearest tenth of a millimeter. This figure is made of a rectangle and a half of a circle. The first figure has the perimeter: 3 + 6 + 3 = 12 mm. The second figure has the perimeter: 2 * Pi * r / 2 = Pi * r ; and the radius : r = 6/2 = 3 mm. So Pi * 3 = 3.14 * 3 = 9.42. Fimally : 12 + 9.42 = 21.42 or 21.4 to the nearest tenth. Answer: C. 21.4 millimeters<span>. </span>
Answer:
![y''(-1) =8](https://tex.z-dn.net/?f=y%27%27%28-1%29%20%3D8)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-xy - 2y = -4
Rate of change of the tangent line at point (-1, 4)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Product Rule/Basic Power Rule]:
![-y - xy' - 2y' = 0](https://tex.z-dn.net/?f=-y%20-%20xy%27%20-%202y%27%20%3D%200)
- [Algebra] Isolate <em>y'</em> terms:
![-xy' - 2y' = y](https://tex.z-dn.net/?f=-xy%27%20-%202y%27%20%3D%20y)
- [Algebra] Factor <em>y'</em>:
![y'(-x - 2) = y](https://tex.z-dn.net/?f=y%27%28-x%20-%202%29%20%3D%20y)
- [Algebra] Isolate <em>y'</em>:
![y' = \frac{y}{-x-2}](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cfrac%7By%7D%7B-x-2%7D)
- [Algebra] Rewrite:
![y' = \frac{-y}{x+2}](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cfrac%7B-y%7D%7Bx%2B2%7D)
<u>Step 3: Find </u><em><u>y</u></em>
- Define equation:
![-xy - 2y = -4](https://tex.z-dn.net/?f=-xy%20-%202y%20%3D%20-4)
- Factor <em>y</em>:
![y(-x - 2) = -4](https://tex.z-dn.net/?f=y%28-x%20-%202%29%20%3D%20-4)
- Isolate <em>y</em>:
![y = \frac{-4}{-x-2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B-4%7D%7B-x-2%7D)
- Simplify:
![y = \frac{4}{x+2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B4%7D%7Bx%2B2%7D)
<u>Step 4: Rewrite 1st Derivative</u>
- [Algebra] Substitute in <em>y</em>:
![y' = \frac{-\frac{4}{x+2} }{x+2}](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cfrac%7B-%5Cfrac%7B4%7D%7Bx%2B2%7D%20%7D%7Bx%2B2%7D)
- [Algebra] Simplify:
![y' = \frac{-4}{(x+2)^2}](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cfrac%7B-4%7D%7B%28x%2B2%29%5E2%7D)
<u>Step 5: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:
![y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}](https://tex.z-dn.net/?f=y%27%27%20%3D%20%5Cfrac%7B0%28x%2B2%29%5E2%20-%208%20%5Ccdot%202%28x%20%2B%202%29%20%5Ccdot%201%7D%7B%5B%28x%20%2B%202%29%5E2%5D%5E2%7D)
- [Derivative] Simplify:
![y'' = \frac{8}{(x+2)^3}](https://tex.z-dn.net/?f=y%27%27%20%3D%20%5Cfrac%7B8%7D%7B%28x%2B2%29%5E3%7D)
<u>Step 6: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em>:
![y''(-1) = \frac{8}{(-1+2)^3}](https://tex.z-dn.net/?f=y%27%27%28-1%29%20%3D%20%5Cfrac%7B8%7D%7B%28-1%2B2%29%5E3%7D)
- [Algebra] Evaluate:
![y''(-1) =8](https://tex.z-dn.net/?f=y%27%27%28-1%29%20%3D8)