<h2>
<u>Requi</u><u>red</u><u> Answer</u><u> </u><u>:</u><u>-</u></h2>
Given system of linear equations are ,
And we need to find the Solution of the linear equation . So let's Firstly number the equations .
<u>→</u><u> </u><u>Multipl</u><u>ying</u><u> </u><u>equⁿ</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>by</u><u> </u><u>3</u><u> </u><u>,</u>
=> 3 ( x + y ) = 2*3
=> 3x + 3y = 6
<u>→</u><u> </u><u>Addin</u><u>g</u><u> </u><u>the</u><u> </u><u>two</u><u> </u><u>equations </u><u>,</u><u> </u>
=> 3x + 3y -3y + y = 6 + 2
=> 4y = 8
=> y = 8/4
=> y = 2
<u>→</u><u> </u><u>Put</u><u> </u><u>y</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>in</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>,</u>
=> x + y = 2
=> x + 2 = 2
=> x = 2- 2
=> x = 0
<h3>
<u>★</u><u> </u><u>Hence</u><u>
the required solution is ( 0 , 2 ) .</u></h3>
92.49 -63.854 ≈ 92 -64 = 28
____
Actual difference is 28.636.
Answer:
$111400
Step-by-step explanation:
First, converting R percent to r a decimal
r = R/100 = 5.7%/100 = 0.057 per year,
then, solving our equation
I = 100000 × 0.057 × 2 = 11400
I = $ 11,400.00
The simple interest accumulated
on a principal of $ 100,000.00
at a rate of 5.7% per year
for 2 years is $ 11,400.00.
Answer:
f(x) = 7
Step-by-step explanation:
we use the bottom equation (4x+3) because
1 > 0
so
4(1) +3 = 7