1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
3 years ago
8

Can I get help on this question or an example? I would really appreciate it.

Mathematics
1 answer:
gulaghasi [49]3 years ago
8 0

Answer:

B = 0.95m + 29.95

Step-by-step explanation:

this is really y = mx + b

m is a rate, 0.95 per mile

b is the y-intercept, or the price you pay no matter what, 29.95

You might be interested in
The population of Cincinnati is 301,305 people. If 28.7% of people in Cincinnati live poverty, how many people live in poverty
IRINA_888 [86]

Answer:

86,475<em> </em>people live in poverty.

Step-by-step explanation:

We are given that the Total Cincinnati population is X_{TOT}=301,305 people.

We want to find the 28.7% of the Total population that lives in poverty. To do so we can use:

X_{POV}=\frac{28.7}{100}X_{TOT}

where X_{POV} is the amount of people that live in poperty. Plugging in values and solving we have:

X_{POV}=\frac{28.7}{100}301,305 \\X_{POV}=0.287*301,305\\X_{POV}=86,474.535

However since here we are referring to number of people (i.e. population) we can not accept any irrational values so we need to round up our value so that

X_{POV}=86,475 people live in poverty in Cincinnati.

5 0
3 years ago
Consider a circle whose equation is x^2+y^2-2x-8=0. Which statements are true? Select three options.
lidiya [134]

Answer:

The radius of the circle is 3 units

The center of the circle lies on the x-axis.

The radius of this circle is the same as the radius of the circle whose equation is x^2 + y^2 = 9

Step-by-step explanation:

5 0
3 years ago
Can anyone help me out with this?​
bogdanovich [222]

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

5 0
2 years ago
<img src="https://tex.z-dn.net/?f=n%20-%205%20%20%5Cgeqslant%20%20-%202" id="TexFormula1" title="n - 5 \geqslant - 2" alt="n -
marysya [2.9K]

Answer:

n \geqslant 3

5 0
4 years ago
Can you give examples of situations that might be modeled with trigonometric functions? That is, can you give examples of phenom
kvasek [131]

Here are your examples

A spring that is bouncing up and down.

An atom or molecule that resonates with a certain frequency.

In fact, anything that resonates: a violin string, a pendulum, the air column in a muffler,.....


4 0
3 years ago
Read 2 more answers
Other questions:
  • There are 8 people who are attending a speed dating event. Each person has the chance to spend 5 minutes on a speed date, gettin
    11·1 answer
  • -6 (2n-7)+2 (n-4)=-36
    15·1 answer
  • Please help. A 32-pound box of cantaloupe costs 24.40. How much would a 12-pound box cost?
    5·2 answers
  • Can I have some help? I need to get done. Thank you! =)
    7·1 answer
  • The sound intensity of a normal conversation is 10^6 times greater than the quietest noise a person can hear. The sound intensit
    14·1 answer
  • A soccer ball is kicked into the air from the ground. If the ball reaches a maximum height of 25ft and spends a total of 2.5 sec
    13·1 answer
  • What is the distance from -2.5 to 0?
    8·1 answer
  • a right triangle is a removed from a rectangle to create the shaded religion shown below. Find the area of the shaded region. Be
    13·1 answer
  • Module 4 Pretest
    9·1 answer
  • Select the correct scientific notation form of this numeral.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!