Explanation:
Below is an attachment containing the solution.
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.
The equation of the car is given by the equation,
x(t) = 2.31 + 4.90t² - 0.10t⁶
If we are going to differentiate the equation in terms of x, we get the value for velocity.
dx/dt = 9.8t - 0.6t⁵
Calculate for the value of t when dx/dt = 0.
dx/dt = 0 = (9.8 - 0.6t⁴)(t)
The values of t from the equation is approximately equal to 0 and 2.
If we substitute these values to the equation for displacement,
(0) , x = 2.31 + 4.90(0²) - 0.1(0⁶) = 2.31
(2) , x = 2.31 + 4.90(2²) - 0.1(2⁶) = 15.51
Thus, the positions at the instants where velocity is zero are 2.31 and 15.51 meters.
West to east.
The earth is spinning on its own axis. Thus, the area of the equator directly hit by the sun's heat and more solar radiation compared to any other area. That same heat warmth the atmosphere. Warm air rises towards the pole which is cooler. This is the reason of constant movement of the atmosphere.
The Coriolis force governed the air flows towards the pole. While the earth is spinning plus the movement of air north or south, the air follows a <span>curved path, toward the east.</span>
Answer: Explanation:
If the number of electrons is equal to the number of protons then the atom is uncharged and is electrically neutral. However, atoms can gain or lose electrons: increasing or decreasing the negative charge. Ionisation is the addition or removal of an electron to create an ion. ..Gaining an electron creates a negative ion.