1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
2 years ago
5

What is the surface area for a rectangular prism with the height of 6 inches, width of 8 inches, and the length of 4 inches

Physics
2 answers:
podryga [215]2 years ago
8 0

Answer:

208 is the surface area!

Explanation:

Hope this helps! ;-)

victus00 [196]2 years ago
8 0

Answer:

208

Explanation:

208 is the answer to this question

You might be interested in
What is the first step in the formation of a protostar?
Fittoniya [83]

Star formation begins in relatively small molecular clouds called dense cores.[7] Each dense core is initially in balance between self-gravity, which tends to compress the object, and both gas pressure and magnetic pressure, which tend to inflate it. As the dense core accrues mass from its larger, surrounding cloud, self-gravity begins to overwhelm pressure, and collapse begins. Theoretical modeling of an idealized spherical cloud initially supported only by gas pressure indicates that the collapse process spreads from the inside toward the outside.[8] Spectroscopic observations of dense cores that do not yet contain stars indicate that contraction indeed occurs. So far, however, the predicted outward spread of the collapse region has not been observed.[9]

The gas that collapses toward the center of the dense core first builds up a low-mass protostar, and then a protoplanetary disk orbiting the object. As the collapse continues, an increasing amount of gas impacts the disk rather than the star, a consequence of angular momentum conservation. Exactly how material in the disk spirals inward onto the protostar is not yet understood, despite a great deal of theoretical effort. This problem is illustrative of the larger issue of accretion disk theory, which plays a role in much of astrophysics.

Regardless of the details, the outer surface of a protostar consists at least partially of shocked gas that has fallen from the inner edge of the disk. The surface is thus very different from the relatively quiescent photosphere of a pre-main sequence or main-sequence star. Within its deep interior, the protostar has lower temperature than an ordinary star. At its center, hydrogen is not yet undergoing nuclear fusion. Theory predicts, however, that the hydrogen isotope deuterium is undergoing fusion, creating helium-3. The heat from this fusion reaction tends to inflate the protostar, and thereby helps determine the size of the youngest observed pre-main-sequence stars.[11]

The energy generated from ordinary stars comes from the nuclear fusion occurring at their centers. Protostars also generate energy, but it comes from the radiation liberated at the shocks on its surface and on the surface of its surrounding disk. The radiation thus created most traverse the interstellar dust in the surrounding dense core. The dust absorbs all impinging photons and reradiates them at longer wavelengths. Consequently, a protostar is not detectable at optical wavelengths, and cannot be placed in the Hertzsprung-Russell diagram, unlike the more evolved pre-main-sequence stars.

The actual radiation emanating from a protostar is predicted to be in the infrared and millimeter regimes. Point-like sources of such long-wavelength radiation are commonly seen in regions that are obscured by molecular clouds. It is commonly believed that those conventionally labeled as Class 0 or Class I sources are protostars.[12][13] However, there is still no definitive evidence for this identification.

4 0
3 years ago
A 0.20-kg object is attached to the end of an ideal horizontal spring that has a spring constant of 120 N/m. The simple harmonic
Umnica [9.8K]

Answer:

<em>A = 6.9 cm</em>

Explanation:

<u>Simple Harmonic Motion</u>

A mass-spring system is a common example of a simple harmonic motion device since it keeps oscillating when the spring is stretched back and forth.

If a mass m is attached to a spring of constant k and they are set to oscillate, the angular frequency of the motion is

\displaystyle w=\sqrt{\frac{k}{m}}

The equation for the motion of the object is written as a sinusoid:

\displaystyle X=A\ cos\ w\ t

Where A is the amplitude.

The instantaneous speed is computed as the derivative of the distance

\displaystyle X'=V=-A\ w\ sin\ w\ t

And the maximum speed is

\displaystyle V_{max}= A\ w

Solving for the amplitude

\displaystyle A= \frac{V_{max}}{w}

Computing w

\displaystyle w =\sqrt{\frac{120}{0.2}}=24.5\   rad/ s

Calculating A

\displaystyle A=\frac{1.7}{24.5}=0.069\ m

\displaystyle \boxed{A=6.9\ cm}

7 0
3 years ago
Jose gets up from his seat on the bus to move closer to the front. Just as he begins to walk forward, the bus stops at a light.
aleksklad [387]

Answer:

She falls forward

Explanation:

Dunno, just factss

5 0
3 years ago
Read 2 more answers
Pls help Asapppppppppp.It is due in a little bit.
bija089 [108]
C I’m pretty sure !
7 0
2 years ago
Read 2 more answers
The mass luminosity relation L  M 3.5 describes the mathematical relationship between luminosity and mass for main sequence sta
ivanzaharov [21]

Answer:

(a) <u>11.3 L</u>

(b) <u>10 M</u>

Explanation:

The mass-luminosity relationship states that:

Luminosity ∝ Mass^3.5

Luminosity = (Constant)(Mass)^3.5

So, in order to find the values of luminosity or mass of different stars, we take the luminosity or mass of sun as reference. Therefore, write the equation for a star and Sun, and divide them to get:

Luminosity of a star/L = (Mass of Star/M)^3.5 ______ eqn(1)

where,

L = Luminosity of Sun

M = mass of Sun

(a)

It is given that:

Mass of Star = 2M

Therefore, eqn (1) implies that:

Luminosity of star/L = (2M/M)^3.5

Luminosity of Star = (2)^3.5 L

<u>Luminosity of Star =  11.3 L</u>

(b)

It is given that:

Luminosity of star = 3160 L

Therefore, eqn (1) implies that:

3160L/L = (Mass of Star/M)^3.5

taking ln on both sides:

ln (3160) = 3.5 ln(Mass of Star/M)

8.0583/3.5 = ln(Mass of Star/M)

Mass of Star/M = e^2.302

<u>Mass of Star = 10 M</u>

3 0
3 years ago
Other questions:
  • Protons are released from rest in a Van de Graaff accelerator. They start from a region where the potential is 7.15 MV then trav
    13·1 answer
  • Can someone help me plz<br>it's a glass bell jar and to vacuum pump
    13·1 answer
  • An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons
    15·1 answer
  • A 19.0 g sample of liquid methane is heated at a constant pressure of 1 atm from a temperature of 109.1 K to a temperature of 18
    12·1 answer
  • What causes the pressure that allows diamonds to form in the mantle?
    14·1 answer
  • Nancy needs to do a scientific investigation for her class. She is interested in pottery, plants, and basketball. Which of the f
    7·2 answers
  • What is threshold of hearing?
    12·1 answer
  • A 65 kg woman is horizontal in a push-up position. What are the vertical forces acting on her hands?​
    8·1 answer
  • If the masses are not changed, but the distance of separation is tripled, what happens to the for
    7·1 answer
  • A machine has mechanical advantages 2, what does it means.<br> plzz tell me the ans
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!